Colorimetric Detection of Glucose Using WO3 Nanosheets as Peroxidase-mimetic Enzyme

Rui Shi , Shuxian Wei , Shiqi Cheng , Jinmin Zeng , Yilin Wang , Xin Shu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 985 -990.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 985 -990. DOI: 10.1007/s40242-021-1215-2
Article

Colorimetric Detection of Glucose Using WO3 Nanosheets as Peroxidase-mimetic Enzyme

Author information +
History +
PDF

Abstract

In the present work, WO3 nanosheets(WO3 NSs) were prepared by a facile method at room temperature. The obtained WO3 NSs showed peroxidase-like activity, which could catalyze 3,3’,5,5’-tetramethylbenzidine(TMB) to form a blue oxidation product(ox TMB) in the presence of H2O2. Based on this, convenient and sensitive colorimetric methods for the detection of H2O2 and glucose were established. The linear ranges for detecting H2O2 and glucose were 1–200 µmol/L and 1–100 µmol/L, respectively. The limits of the detection of H2O2 and glucose were as low as 0.79 and 0.96 µmol/L, respectively. This method was also successfully applied to the detection of glucose in urine samples. The detection result was consistent with that of the value detected by the clinical method, indicating the potential in clinical diagnosis and biomedical detection.

Keywords

WO3 nanosheet / Peroxidase-like activity / Colorimetric detection / H2O2 / Glucose

Cite this article

Download citation ▾
Rui Shi, Shuxian Wei, Shiqi Cheng, Jinmin Zeng, Yilin Wang, Xin Shu. Colorimetric Detection of Glucose Using WO3 Nanosheets as Peroxidase-mimetic Enzyme. Chemical Research in Chinese Universities, 2022, 38(4): 985-990 DOI:10.1007/s40242-021-1215-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J, Ge J, Zhang L, Lia Z H, Qu L B. Sensors Actuators B: Chem., 201, 233: 438.

[2]

Ren H J, Ma T G, Zhao J, Zhou R. Chem. Res. Chinese Universities, 2018, 34(2): 260.

[3]

Liu T, Zhang S X, Liu W, Zhao S, Lu Z W, Wang Y Y, Wang G T, Zou P, Wang X X, Zhao Q B, Rao H B. Sensors Actuators B: Chem., 2020, 305: 127524.

[4]

Chen M, Zhou H, Liu X K, Yuan T W, Wang W Y, Zhao C, Zhao Y F, Zhou F Y, Wang X, Xue Z G, Yao T, Xiong C, Wu Y E. Small, 2020, 16: 2002343.

[5]

Ge J, Xing K, Xin G, Lei H Y, Shen X P, Zhang L, Li Z H. Microchimica Acta, 2018, 185: 559.

[6]

Feng L P, Yang J N, Zhang S, Zhang L X, Chen X, Li P, Gao Y, Xie S J, Zhang Y, Wang H. Analyst, 2020, 145: 5273.

[7]

Shi M Y, Xu M, Gu Z Y. Anal. Chim. Acta, 2019, 1079: 164.

[8]

Cai Q Y, Geng X, He J J, Sun Y Q, Li Z H. Microchimica Acta, 2019, 186: 160.

[9]

Cai Q Y, Meng H M, Liu Y R, Li Z H. Microchimica Acta, 2019, 186: 78.

[10]

Ma C M, Sun Z, Chen C B, Zhang L L, Zhu S H. Food Chem., 2014, 145: 784.

[11]

Manu P G, Sarita J, Yogendra P K, Ravindra N C. Food Chem., 2014, 154: 127.

[12]

Shen C C, Su J, Li X Z, Luo J J, Yang M H. Sensors Actuators B: Chem., 2015, 209: 695.

[13]

Wang B, Wu Y Y, Chen Y F, Weng B, Li C M. Sensors Actuators B: Chem., 2017, 238: 802.

[14]

Ferej T H, Kitte S A, Zafar M N, Halawa M I, Han S, Zhang W, Xu G B. Analyst, 2020, 145: 1041.

[15]

Si X X, Song X L, Xu K, Zhao C, Wang J, Liu Y S, He S Y, Jin M H, Li H. Microchem. J., 2019, 149: 104050.

[16]

Ma D Q, Yu J, Yin W Y, Zhang X, Mei L Q, Zu Y, An L J, Gu Z J. Chemistry: A European Journal, 2018, 24: 15868.

[17]

Song Y J, Wei W L, Qu X G. Adv. Mater., 2011, 23: 4215.

[18]

Wu J J X, Wang X Y, Wang Q, Lou Z P, Li S R, Zhu Y Y, Qin L, Wei H. Chem. Soc. Rev., 2019, 48: 1004.

[19]

Yuan C L, Qin X, Xu Y J, Jing Q Q, Shi R, Wang Y L. Microchem. J., 2020, 159: 105365.

[20]

Nirala N R, Gaurav K, Brijesh K, Vinita, Rajiv P, Vinod K. Talanta, 2017, 173: 36.

[21]

Song H W, Li Z B, Peng Y X, Li X, Xu X C, Pan J M, Niu X H. Analyst, 2019, 144: 2416.

[22]

Ding Y N, Yang B C, Liu H, Liu Z X, Zhang X, Zheng X W, Liu Q Y. Sensors Actuators B: Chem., 2018, 259: 775.

[23]

Liu Q Y, Yang Y T, Lv X T, Ding Y, Zhang Y Z, Jing J J, Xu C X. Sensors Actuators B: Chem., 2017, 240: 726.

[24]

Yin X L, Liu P, Xu X C, Pan J M, Li X, Niu X H. Sensors Actuators B: Chem., 2021, 328: 129033.

[25]

Shi R, Qin X, Yuan C L, Cheng S Q, Wang Y L. Chinese J. Anal. Chem., 2021, 49: 397.

[26]

Huang L J, Zhu W X, Zhang W T, Chen K, Wang J, Wang R, Yang Q F, Hu N, Suo Y R, Wang J L. Microchimica Acta, 2017, 185: 7.

[27]

Mauro E, Elisabetta C, Raül D, Teresa A, Aziz G, Jordi A, Pietro S, Guido F, Joan R M. ACS Appl. Mater. Interfaces, 2014, 6: 16808.

[28]

Pan D, Fang Z Z, Yang E L, Ning Z Q, Zhou Q, Chen K Y, Zheng Y J, Zhang Y J, Shen Y F. Angew. Chem. Int. Ed., 2020, 59: 16747.

[29]

Peng H P, Lin D W, Liu P, Wu Y H, Li S H, Lei Y, Chen W, Chen Y Z, Lin X H, Xia X H, Liu A L. Anal. Chim. Acta, 2017, 992: 128.

[30]

Li Z H, Liu X Y, Liang X H, Zhong J H, Guo L Q, Fu F F. Talanta, 2019, 204: 278.

[31]

Liang L, Li K, Xiao C, Fan S J, Liu J, Zhang W S, Xu W H, Tong W, Liao J Y, Zhou Y Y, Ye B J, Xie Y. J. Am. Chem. Soc., 2015, 137: 3102.

[32]

Jin J, Yu J G, Guo D P, Cui C, Ho W K. Small, 2015, 11: 5262.

[33]

Ma Y, Zhao M G, Cai B, Wang W, Ye Z Z, Huang J Y. Chem. Commun., 2014, 50: 11135.

[34]

Shpak A P, Korduban A M, Medvedskij M M, Kandyba V O. J. Electron. Spectrosc. Relat. Phenom., 2007, 156: 172.

[35]

Zhao L J, Wu Z P, Liu G N, Lu H Y, Gao Y, Liu F M, Wang C G, Cui J W, Lu G Y. J. Mater. Chem. B, 2019, 7: 7042.

[36]

Subhash C, Vikas K S, Pradeep K Y, Daraksha B, Vijay K, Vinay K P, Mahe T, Syed H H. Anal. Chim. Acta, 2019, 1054: 145.

[37]

Zhao J, Dong W F, Zhang X D, Chai H X, Huang Y M. Sensors Actuators B: Chem., 2018, 263: 575.

[38]

Guo X R, Wang Y, Wu F Y, Ni Y N, Kokot S. Analyst, 2015, 140: 1119.

[39]

Jin L H, Meng Z, Zhang Y Q, Cai S J, Zhang Z H, Li C, Shang L, Shen Y H. ACS Appl. Mater. Interfaces, 2017, 9: 10027.

[40]

Mu J S, Wang Y, Zhao M, Zhang L. Chem. Commun., 2012, 48: 2540.

[41]

Wang Q Q, Zhang L L, Shang C S, Zhang Z Q, Dong S J. Chem. Commun., 201, 52: 5410.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/