Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units

Xuelian Zheng , Ling Liu , Cuicui Yang , Yuanyuan He , Jiu Chen , Wei Quan Tian

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 974 -984.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 974 -984. DOI: 10.1007/s40242-021-1213-4
Article

Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units

Author information +
History +
PDF

Abstract

The current study has obtained excellent potential nonlinear optical(NLO) materials by combining density functional theory methods with sum-over-states model to predict the second order NLO properties of helical graphene nanoribbons(HGNs) through introducing azulene defects or/and BN units. The introduction of these functional groups deforms the pristine HGN (compression or tension) and enhances obviously the static first hyperpolarizability(〈β 0〉) of system by up to two orders of magnitude. The tensor components along the helical axis of HGNs play a dominant role in the total 〈β 0〉. The azulene defects and the BN units polarize the pristine HGN to different degrees, and the azulenes and contiguous benzenes are involved in the major electron excitations with significant contributions to 〈β 0〉 but the BN units are not. The BN-doped chiral HGNs have good kinetic stability and strong second order NLO properties(6.84 × 105 × 10−30 esu), and can be a potential candidate of high-performance second order NLO materials. The predicted two-dimensional second order NLO spectra provide useful information for further exploration of those helicenes for electro-optic applications.

Keywords

Helical graphene nanoribbon / Azulene defect / BN-doping / Second order nonlinear optical(NLO) property / Sum-over-states model

Cite this article

Download citation ▾
Xuelian Zheng, Ling Liu, Cuicui Yang, Yuanyuan He, Jiu Chen, Wei Quan Tian. Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units. Chemical Research in Chinese Universities, 2022, 38(4): 974-984 DOI:10.1007/s40242-021-1213-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fanti M, Orlandi G, Zerbetto F. J. Am. Chem. Soc., 1995, 117: 6101.

[2]

Wang J, Chen Y, Blau W J. J. Mater. Chem., 2009, 19: 7425.

[3]

Chen Y, Bai T, Dong N, Fan F, Zhang S, Zhuang X, Sun J, Zhang B, Zhang X, Wang J, Blau W J. Prog. Mater. Sci., 201, 84: 118.

[4]

Yoshikawa N, Tamaya T, Tanaka K. Science, 2017, 356: 736.

[5]

Deb J, Paul D, Sarkar U. J. Phys. Chem. A, 2020, 124: 1312.

[6]

Shen Y, Chen C-F. Chem. Rev., 2012, 112: 1463.

[7]

Meisenheimer J, Witte K. Chem. Ber., 1903, 36: 4153.

[8]

Murguly E, McDonald R, Branda N R. Org. Lett., 2000, 2: 3169.

[9]

Takenaka N, Sarangthem R S, Captain B. Angew. Chem. Int. Ed., 2008, 47: 9708.

[10]

Hassey R, Swain E J, Hammer N I, Venkataraman D, Barnes M D. Science, 200, 314: 1437.

[11]

Reetz MT, Sostmann S. Tetrahedron, 2001, 57: 2515.

[12]

Botek E, Champagne B, Turki M, André J-M. J. Chem. Phys., 2004, 120: 2042.

[13]

Xu X, Liu B, Zhao W, Jiang Y, Liu L, Li W, Zhang G, Tian W Q. Nanoscale, 2017, 9: 9693.

[14]

Gingras M. Chem. Soc. Rev., 2013, 42: 1051.

[15]

Botek E, André J-M, Champagne B, Verbiest T, Persoons A. J. Chem. Phys., 2005, 122: 234713.

[16]

Botek E, Spassova M, Champagne B, Asselberghs I, Persoons A, Clays K. Chem. Phys. Lett., 2005, 412: 274.

[17]

Bossi A, Licandro E, Maiorana S, Rigamonti C, Righetto S, Stephenson G R, Spassova M, Botek E, Champagne B. J. Phys. Chem. C, 2008, 112: 7900.

[18]

Wheland G W, Mann D E. J. Chem. Phys., 1949, 17: 264.

[19]

Yazyev O V, Louie S G. Nat. Mater., 2010, 9: 806.

[20]

Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M. Nat. Mater., 2012, 11: 759.

[21]

He Y-Y, Chen J, Zheng X-L, Xu X, Li W-Q, Yang L, Tian W Q. ACS Appl. Nano Mater., 2019, 2: 1648.

[22]

Yang C-C, He Y-Y, Zheng X-L, Chen J, Yang L, Li W-Q, Tian W Q. J. Mater. Chem. C, 2020, 8: 1879.

[23]

Ferrand A, Siaj M, Claverie J P. ACS Appl. Nano Mater., 2020, 3: 7305.

[24]

Paul D, Deb J, Sarkar U. ChemistrySelect, 2020, 5: 6987.

[25]

Hatakeyama T, Hashimoto S, Oba T, Nakamura M. J. Am. Chem. Soc., 2012, 134: 19600.

[26]

Parthenopoulos D A, Rentzepis P M. Science, 1989, 245: 843.

[27]

Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Science, 1999, 286: 1523.

[28]

Kriegel I, Urso C, Viola D, de Trizio L, Scotognella F, Cerullo G, Manna L. J. Phys. Chem. Lett., 201, 7: 3873.

[29]

Lin Z, Huang L, Xu Z T, Li X, Zentgraf T, Wang Y. Adv. Opt. Mater., 2019, 7: 1900782.

[30]

Xiao X, Pedersen S K, Aranda D, Yang J, Wiscons R A, Pittelkow M, Steigerwald M L, Santoro F, Schuster N J, Nuckolls C. J. Am. Chem. Soc., 2021, 143: 983.

[31]

Ma J, Fu Y, Dmitrieva E, Liu F, Komber H, Hennersdorf F, Popov A A, Weigand J J, Liu J, Feng X. Angew. Chem. Int. Ed., 2020, 59: 5637.

[32]

Ogawa N, Yamaoka Y, Takikawa H, Yamada K, Takasu K. J. Am. Chem. Soc., 2020, 142: 13322.

[33]

Hehre W J, Ditchfield R, Pople J A. J. Chem. Phys., 1972, 56: 2257.

[34]

Hariharan P C, Pople J A. Theor. Chim. Acta, 1973, 28: 213.

[35]

Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 199, 77: 3865.

[36]

Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1997, 78: 1396.

[37]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09 (Revision D.01), 2013, Wallingford CT: Gaussian, Inc.

[38]

Budyka M F, Zyubina T S, Ryabenko A G, Lin S H, Mebel A M. Chem. Phys. Lett., 2005, 407: 266.

[39]

Ridley J, Zerner M. Theor. Chim. Acta, 1973, 32: 111.

[40]

Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 393: 51.

[41]

Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 46: 6671.

[42]

Becke A D. J. Chem. Phys., 1993, 98: 5648.

[43]

Tian W. Q., LinSOSProNLO, V1.01, Registration No.2017SR526488 and Classification No. 30219-7500, Copyright Protection Center of China, Beijing, China

[44]

Tian W Q. J. Comput. Chem., 2012, 33: 466.

[45]

Orr B J, Ward J F. Mol. Phys., 1971, 20: 513.

[46]

Bishop D M. J. Chem. Phys., 1994, 100: 6535.

[47]

Beljonne D, Cornil J, Shuai Z, Brédas J L, Rohlfing F, Bradlley D D C, Torruellas W E, Ricci V, Stegeman G I. Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 55: 1505.

[48]

Lalama S J, Garito A F. Phys. Rev. A: At., Mol., Opt. Phys., 1979, 20: 1179.

[49]

Priyadarshy S, Therien M J, Beratan D N. J. Am. Chem. Soc., 199, 118: 1504.

[50]

Isborn C M, Leclercq A, Vila F D, Dalton L R, Brédas J L, Eichinger B E, Robinson B H. J. Phys. Chem. A, 2007, 111: 1319.

[51]

Frattarelli D, Schiavo M, Facchetti A, Ratner M A, Marks T J. J. Am. Chem. Soc., 2009, 131: 12595.

[52]

Yang C.-C., Zheng X.-L., Tian W. Q., Li W.-Q., Yang L., Phys. Chem. Chem. Phys., 2021, DOI: https://doi.org/10.1039/D1CP00383F

[53]

Zhang X, Zhao M. Sci. Rep., 2014, 4: 5699.

[54]

Salzner U, Lagowski J B, Pickup P G, Poirier R A. J. Comput. Chem., 1997, 18: 1943.

[55]

Xiao H, Tahir-Kheli J, Goddard W A III J. Phys. Chem. Lett., 2011, 2: 212.

[56]

Chen K.-C., Zheng X.-L., Yang C.-C., Tian W. Q., Li W.-Q., Yang L., Chem. Res. Chinese. Universties., 2021, DOI: https://doi.org/10.1007/s40242-021-1090-x

[57]

Pegu D, Deb J, Van Alsenoy C, Sarkar U. Spectrosc. Lett., 2017, 50: 232.

[58]

Pegu D, Deb J, Saha S K, Paul M K, Sarkar U. J. Mol. Struct., 2018, 1160: 167.

[59]

Deb J, Paul D, Sarkar U. AIP Conf. Proc., 2019, 2115: 030169.

[60]

Zyss J, Ledoux I. Chem. Rev., 1994, 94: 77.

[61]

Castet F, Bogdan E, Plaquet A, Ducasse L, Champagne B, Rodriguez V. J. Chem. Phys., 2012, 136: 024506.

[62]

Lepetit L, Joffre M. Opt. Lett., 199, 21: 564.

[63]

Lepetit L, Chériaux G, Joffre M. J. Nonlinear Opt. Phys. Mater., 199, 5: 465.

[64]

Chen J, Wang M Q, Zhou X, Yang L, Li W-Q, Tian W Q. Phys. Chem. Chem. Phys., 2017, 19: 29315.

[65]

Coe B J, Rusanova D, Joshi V D, Sánchez S, Vávra J, Khobragade D, Severa L, Císařová I, Šaman D, Pohl R, Clays K, Depotter G, Brunschwig B S, Teplý F. J. Org. Chem., 201, 81: 1912.

[66]

Verbiest T, Elshocht S V, Kauranen M, Hellemans L, Snauwaert J, Nuckolls C, Katz T J, Persoons A. Science, 1998, 282: 913.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/