Catalytic Hydration of Aromatic Alkynes to Ketones over H-MFI Zeolites

Yunzhe Zhang , Weili Dai , Guangjun Wu , Naijia Guan , Landong Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 173 -180.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 173 -180. DOI: 10.1007/s40242-021-1209-0
Article

Catalytic Hydration of Aromatic Alkynes to Ketones over H-MFI Zeolites

Author information +
History +
PDF

Abstract

The hydration of alkyne represents the most straightforward and simplest route toward the synthesis of ketone. Herein, Brønsted acidic zeolites are explored as potential catalysts for the liquid-phase phenylacetylene hydration. The topology structure and Si/Al ratio are disclosed to be key factors controlling the catalytic activity of zeolites. Typically, H-MFI zeolite with a Si/Al molar ratio of 13 exhibits the highest catalytic activity, with turnover frequency of 6.0 h−1 at 363 K. Besides, H-MFI zeolite shows good catalytic stability and recyclability in the reaction of phenylacetylene hydration, and the substrate scope can be simply extended to other soluble aromatic alkynes. The reaction mechanism of phenylacetylene hydration is investigated by means of kinetic and spectroscopic analyses. The Markovnikov electrophilic addition of phenylacetylene by hydrated protons is established as the rate-determining step, followed by deprotonation and enol isomerization to derive acetophenone product.

Keywords

Phenylacetylene / Catalytic hydration / Zeolite / Brønsted acid site / H-MFI

Cite this article

Download citation ▾
Yunzhe Zhang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Catalytic Hydration of Aromatic Alkynes to Ketones over H-MFI Zeolites. Chemical Research in Chinese Universities, 2022, 38(1): 173-180 DOI:10.1007/s40242-021-1209-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kutscheroff M. Ber. Dtsch. Chem. Ges., 1881, 14: 1540.

[2]

Gorin D J, Toste F D. Nature, 2007, 446: 395.

[3]

Jimenez-Nunez E, Echavarren A M. Chem. Commun., 2007, 4: 333.

[4]

Ibrahim H, Fremont P, Braunstein P, Théry V, Nauton L, Cisnetti F, Gautier A. Adv. Syn. Catal., 2015, 357: 3893.

[5]

Gatto M, Belanzoni P, Belpassi L, Biasiolo L, Del Zotto A, Tarantelli F, Zuccaccia D. ACS Catal., 201, 6: 7363.

[6]

Heidrich M, Bergmann M, Muller-Borges D, Dorian M B. Adv. Syn. Catal., 2018, 360: 3572.

[7]

Chen X, Ye X, Liang W Y, Zhou Q, Giang V T. Mol. Catal., 2018, 448: 171.

[8]

Baidossi W, Lahav M, Blum J. J. Org. Chem., 1997, 62: 669.

[9]

Israelsohn O, Vollhardt K P C, Blum J. J. Mol. Catal. A Chem., 2002, 184: 1.

[10]

Trentin F, Chapman A M, Scarso A, Sgarbossa P, Strukul G, Wass D F. Adv. Syn. Catal., 2012, 354: 1095.

[11]

Wu X F, Bezier D, Darcel C. Adv. Syn. Catal., 2009, 351: 367.

[12]

Bassetti M, Ciceri S, Lancia F, Pasquini C. Tetrahedron Lett., 2014, 55: 1608.

[13]

Thuong M B T, Mann A, Wagner A. Chem. Commun., 2012, 48: 434.

[14]

Rao K T V, Rrasad P S S, Lingaiah N. Green Chem., 2012, 14: 1507.

[15]

Niu T, Jiang D, Li S, Shu X, Li H, Zhang A, Xu J, Ni B. Tetrahedron Lett., 2017, 58: 1156.

[16]

Sandor B O, Zsanett S, Ferenc F. ACS Sus. Chem. Eng., 2019, 7: 13286.

[17]

Kore R, Srivastava R. Tetrahedron Lett., 2012, 53: 3245.

[18]

Tao D J, Liu F J, Wang L, Jiang L. Appl. Catal. A: Gen., 2018, 564: 56.

[19]

Tanemura K, Suzuki T. Tetrahedron Lett., 2017, 58: 955.

[20]

Deng T, Wang C. Catal. Sci. Technol., 201, 6: 7029.

[21]

Liu W, Wang H, Li C. Org. Lett., 201, 18: 2184.

[22]

Xu S, Yun Z, Feng Y, Tang T, Fang Z, Tang T. RSC Adv., 201, 6: 69822.

[23]

Sarmah B, Srivastava R, Satpati B. Chemistry Select, 201, 1: 1047.

[24]

Wu G, Hei F, Guan N, Li L. Catal. Sci. Technol., 2013, 3: 1333.

[25]

Dai W, Yang L, Wang C, Wang X, Wu G, Guan N, Obenaus U, Hunger M, Li L. ACS Catal., 2018, 8: 1352.

[26]

Chai Y, Liu S, Zhao Z-J, Gong J, Dai W, Wu G, Guan N, Li L. ACS Catal., 2018, 8: 8578.

[27]

Tang B, Dai W, Sun X, Guan N, Li L. Green Chem., 2014, 16: 2281.

[28]

Hunger M. Catal. Rev. Sci. Eng., 1997, 39: 345.

[29]

Dai W, Lei Q, Wu G, Guan N, Hunger M, Li L. ACS Catal., 2020, 10: 14135.

[30]

Shi H, Eckstein S, Vjunov A, Camaioni D M, Lercher J A. Nat. Commun., 2017, 8: 15442.

[31]

Yan P, Xie Z, Tian S, Li F, Wang D, Su D S, Qi W. RSC Adv., 2018, 8: 38150.

[32]

Zicovich-Wilson C M, Corma A, Viruela P. J. Phys. Chem., 1994, 98: 10863.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/