Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media

Ruonan Zheng , Zihui Zhai , Chenxi Qiu , Rui Gao , Yang Lv , Yujiang Song

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 961 -967.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 961 -967. DOI: 10.1007/s40242-021-1199-y
Article

Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media

Author information +
History +
PDF

Abstract

Zeolite imidazole frameworks 8(ZIF-8) and modified ones after pyrolysis are highly promising toward oxygen reduction reaction(ORR). Especially, the compositional modification of ZIF-8 is crucial to the enhancement of ORR performance, yet limited to the substitution of skeletal Zn(II) with other cations or simple physical adsorption of cations. Herein, we report the decoration of ZIF-8 with ORR active hemin(FeP) and Co(III) protoporphyrin(CoP) via the coordination between the peripheral carboxylic group of FeP and CoP with skeletal Zn(II). This allows well control over the quantity of loaded FeP and CoP, critical to the synthesis of advanced electrocatalysts. Subsequent pyrolysis of FeP and CoP co-decorated ZIF-8 leads to highly active ORR electrocatalysts with a half-wave potential(E 1/2) of 0. 913 V(vs. RHE) in 0.1 mol/L KOH aq. and an E 1/2 of 0.803 V(vs. RHE) in 0.1 mol/L HClO4 aq. Moreover, our electrocatalyst shows much more improved and comparable durability in alkaline and acidic media, respectively, during 3000 cycles of cyclic voltammetry(CV) scanning relative to commercial Pt/C.

Keywords

Non-noble metal electrocatalyst / ZIF-8 / Porphyrin / Oxygen reduction reaction(ORR)

Cite this article

Download citation ▾
Ruonan Zheng, Zihui Zhai, Chenxi Qiu, Rui Gao, Yang Lv, Yujiang Song. Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Chemical Research in Chinese Universities, 2022, 38(4): 961-967 DOI:10.1007/s40242-021-1199-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang H, Gu J, Zheng X, Liu M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J. Energy Environ. Sci., 2019, 12: 322.

[2]

Shao M, Chang Q, Dodelet J-P, Chenitz R. Chem. Rev., 201, 116: 3594.

[3]

Zhu C, Li H, Fu S, Du D, Lin Y. Chem. Soc. Rev., 201, 45: 517.

[4]

Zhang J, Zhang C, Li W, Guo Q, Gao H, You Y, Li Y, Cui Z, Jiang K-C, Long H, Zhang D, Xin S. ACS Appl. Mater. Interfaces, 2018, 10: 5543.

[5]

Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y. J. Am. Chem. Soc., 2017, 139: 17281.

[6]

Guo Z, Zhang Z, Li Z, Dou M, Wang F. Nano Energy, 2019, 57: 108.

[7]

Ye G, He Q, Liu S, Zhao K, Su Y, Zhu W, Huang R, He Z. J. Mater. Chem. A, 2019, 7: 16508.

[8]

Li J, Song Y, Zhang G, Liu H, Wang Y, Sun S, Guo X. Adv. Funct. Mater., 2017, 27: 1604356.

[9]

Wen J, Li Y, Gao J. Chem. Res. Chinese Universities, 2020, 36(4): 662.

[10]

Fu X, Zamani P, Choi J-Y, Hassan F M, Jiang G, Higgins D C, Zhang Y, Hoque M A, Chen Z. Adv. Mater., 2017, 29: 1604456.

[11]

Liang S, Chen R, Yu P, Ni M, Zhang Q, Zhang X, Yang W. Chem. Commun., 2017, 53: 11453.

[12]

Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y. Angew. Chem. Int. Ed., 2017, 56: 6937.

[13]

Zhang H, Chung H T, Cullen D A, Wagner S, Kramm U I, More K L, Zelenay P, Wu G. Energy Environ. Sci., 2019, 12: 2548.

[14]

Kwak D.-H., Han S.-B., Lee Y.-W., Park H.-S., Choi I.-A., Ma K.-B., Kim 2017, 203, 889

[15]

Zitolo A, Goellner V, Armel V, Sougrati M-T, Mineva T, Stievano L, Fonda E, Jaouen F. Nat. Mater., 2015, 14: 937.

[16]

Wang X, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Fu H, Wang T, Zheng J, Wu G, Li X. Nano Energy, 201, 25: 110.

[17]

Li J, Zhang H, Samarakoon W, Shan W, Cullen D A, Karakalos S, Chen M, Gu D, More K L, Wang G, Feng Z, Wang Z, Wu G. Angew. Chem. Int. Ed., 2019, 58: 18971.

[18]

Zhu Z, Yin H, Wang Y, Chuang C-H, Xing L, Dong M, Lu Y-R, Casillas-Garcia G, Zheng Y, Chen S, Dou Y, Liu P, Cheng Q, Zhao H. Adv. Mater., 2020, 32: 2004670.

[19]

Kato M, Murotani T, Yagi I. Chem. Lett., 201, 45: 1213.

[20]

He Q, Yang X, Ren X, Koel B E, Ramaswamy N, Mukerjee S, Kostecki R. J. Power Sources, 2011, 196: 7404.

[21]

Zhang J, Yang H, Liu B. Adv. Eng. Mater., 2021, 11: 2002473.

[22]

Zhai Z, Liu Q, Zheng R, Qiu C, Qin J, Li J, Xie Y, Wang A, Huang J, Song Y. Int. J. Hydrogen Energy, 2021, 46: 11041.

[23]

Lu Z, Wang B, Hu Y, Liu W, Zhao Y, Yang R, Li Z, Luo J, Chi B, Jiang Z, Li M, Mu S, Liao S, Zhang J, Sun X. Angew. Chem. Int. Ed., 2019, 58: 2622.

[24]

Yang G, Zhu J, Yuan P, Hu Y, Qu G, Lu B-A, Xue X, Yin H, Cheng W, Cheng J, Xu W, Li J, Hu J, Mu S, Zhang J-N. Nat. Commun., 2021, 12: 1734.

[25]

Kato M, Fujibayashi N, Abe D, Matsubara N, Yasuda S, Yagi I. ACS Catal., 2021, 11: 2356.

[26]

Sahraie N R, Kramm U I, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch J-P, Strasser P. Nat. Commun., 2015, 6: 8618.

[27]

Wang J, Liu W, Luo G, Li Z, Zhao C, Zhang H, Zhu M, Xu Q, Wang X, Zhao C, Qu Y, Yang Z, Yao T, Li Y, Lin Y, Wu Y, Li Y. Energy Environ. Sci., 2018, 11: 3375.

[28]

Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443.

[29]

Zhang D, Chen W, Li Z, Chen Y, Zheng L, Gong Y, Li Q, Shen R, Han Y, Cheong W-C, Gu L, Li Y. Chem. Commun., 2018, 54: 4274.

[30]

Wang X, Zhuang L, Jia Y, Zhang L, Yang Q, Xu W, Yang D, Yan X, Zhang L, Zhu Z, Brown C L, Yuan P, Yao X. Chem. Res. Chinese Universities, 2020, 36(3): 479.

[31]

Qian Y, An T, Birgersson K E, Liu Z, Zhao D. Small, 2018, 14: 1704169.

[32]

Han J, Meng X, Lu L, Bian J, Li Z, Sun C. Adv. Funct. Mater., 2019, 29: 1808872.

[33]

Garrido-Barros P, Gimbert-Suriñach C, Matheu R, Sala X, Llobet A. Chem. Soc. Rev., 2017, 46: 6088.

[34]

Wang D, Groves J T. Proc. Natl. Acad. Sci., 2013, 110: 15579.

[35]

Olaya A J, Omatsu T, Hidalgo-Acosta J C, Riva J S, Bassetto V C, Gasilova N, Girault H H. J. Am. Chem. Soc., 2019, 141: 6765.

[36]

Meyer K, Ranocchiari M, van Bokhoven J A. Energy Environ. Sci., 2015, 8: 1923.

[37]

Liao P-Q, Shen J-Q, Zhang J-P. Coordin. Chem. Rev., 2018, 373: 22.

[38]

Venna S R, Jasinski J B, Carreon M A. J. Am. Chem. Soc., 2010, 132: 18030.

[39]

Lv Y, Liu H, Li J, Chen J, Song Y. J. Electroanal. Chem., 2020, 870: 114172.

[40]

Li J, Liu H, Y, Guo X, Song Y. Chin. J. Catal., 201, 37: 1109.

[41]

Hu Y, Kazemian H, Rohani S, Huang Y, Song Y. Chem. Commun., 2011, 47: 12694.

[42]

Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci., 200, 103: 10186.

[43]

Mukhopadhyay S, Basu O, Das S K. ChemCatChem, 2020, 12: 5430.

[44]

Liang Z, Guo H, Zhou G, Guo K, Wang B, Lei H, Zhang W, Zheng H, Apfel U-P, Cao R. Angew. Chem. Int. Ed., 2021, 60: 8472.

[45]

Wang R, Li Y. J. Power Sources, 2019, 421: 139.

[46]

Busch M, Halck N B, Kramm U I, Siahrostami S, Krtil P, Rossmeisl J. Nano Energy, 201, 29: 126.

[47]

Jia Q, Ramaswamy N, Tylus U, Strickland K, Li J, Serov A, Artyushkova K, Atanassov P, Anibal J, Gumeci C, Barton S C, Sougrati M-T, Jaouen F, Halevi B, Mukerjee S. Nano Energy, 201, 29: 65.

[48]

Jiang R, Li L, Sheng T, Hu G, Chen Y, Wang L. J. Am. Chem. Soc., 2018, 140: 11594.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/