Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing

Haonan Li , Zhao Wang , Fengwei Huo , Shutao Wang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 846 -854.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 846 -854. DOI: 10.1007/s40242-021-1197-0
Review

Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing

Author information +
History +
PDF

Abstract

Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates. The superior throughput, resolution, and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level. Herein, we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing. Benefitting from uniform, reproducible, and large-area array patterns, DPN-based biosensors have shown high sensitivity, excellent selectivity, and fast response in target analyte detection and specific cellular recognition. We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed, programmable, and commercial array-based sensing biochips.

Keywords

Dip-pen nanolithography / Micro/nano-array pattern / Biosensing

Cite this article

Download citation ▾
Haonan Li, Zhao Wang, Fengwei Huo, Shutao Wang. Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing. Chemical Research in Chinese Universities, 2021, 37(4): 846-854 DOI:10.1007/s40242-021-1197-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShepherdG MNature, 2006, 444: 316.

[2]

GuerriniL, Garcia-RicoE, Pazos-PerezN, Alvarez-PueblaR AACS Nano, 2017, 11: 5271.

[3]

GengY, PevelerW J, RotelloV MAngew. Chem. Int. Ed., 2019, 58: 5190.

[4]

NieZ, KumachevaENat. Mater., 2008, 7: 277.

[5]

PinerR D, ZhuJ, XuF, HongS H, MirkinC AScience, 1999, 283: 661.

[6]

HuangL, ChenP C, LiuM, FuX, GordiichukP, YuY, WolvertonC, KangY, MirkinC AProc. Natl. Acad. Sci. USA, 2018, 115: 3764.

[7]

KluenderE J, HedrickJ L, BrownK A, RaoR, MeckesB, DuJ S, MoreauL M, MaruyamaB, MirkinC AProc. Natl. Acad. Sci. USA, 2019, 116: 40.

[8]

DuJ S, ShinD, StanevT K, MusumeciC, XieZ, HuangZ, LaiM, SunL, ZhouW, SternN P, DravidV P, MirkinC ASci. Adv., 2020, 6: eabc4959.

[9]

CabezasM D, MeckesB, MirkinC A, MrksichMACS Nano, 2019, 13: 11144.

[10]

ChenP C, LiuM, DuJ S, MeckesB, WangS, LinH, DravidV P, WolvertonC, MirkinC AScience, 2019, 363: 959.

[11]

HuangL, LinH, ZhengC Y, KluenderE J, GolnabiR, ShenB, MirkinC AJ. Am. Chem. Soc., 2020, 142: 4570.

[12]

BrownK A, EichelsdoerferD J, LiaoX, HeS, MirkinC AFront. Phys., 2014, 9: 385.

[13]

BraunschweigA B, HuoF, MirkinC ANat. Chem., 2009, 1: 353.

[14]

LiuG, HirtzM, FuchsH, ZhengZSmall, 2019, 15: 1900564.

[15]

GarciaR, KnollA W, RiedoENat. Nanotechnol., 2014, 9: 577.

[16]

HeQ, TanC, ZhangHACS Nano, 2017, 11: 4381.

[17]

BrownK A, HedrickJ L, EichelsdoerferD J, MirkinC AACS Nano, 2019, 13: 8.

[18]

GiamL R, MirkinC AAngew. Chem. Int. Ed., 2011, 50: 7482.

[19]

GingerD S, ZhangH, MirkinC AAngew. Chem. Int. Ed., 2004, 43: 30.

[20]

WuC C, ReinhoudtD N, OttoC, SubramaniamV, VeldersA HSmall, 2011, 7: 989.

[21]

LiuX, CarbonellC, BraunschweigA BChem. Soc. Rev., 2016, 45: 6289.

[22]

CarbonellC, BraunschweigA BAcc. Chem. Res., 2017, 50: 190.

[23]

SalaitaK, WangY, MirkinC ANat. Nanotechnol., 2007, 2: 145.

[24]

LiuG, PetroskoS H, ZhengZ, MirkinC AChem. Rev., 2020, 120: 6009.

[25]

LiZ-Q, GuoP, ZhouY-GAdv. Mater. Technol., 20212000897

[26]

HongS H, MirkinC AScience, 2000, 288: 1808.

[27]

HuoF W, ZhengZ J, ZhengG F, GiamL R, ZhangH, MirkinC AScience, 2008, 321: 1658.

[28]

ShimW, BraunschweigA B, LiaoX, ChaiJ N, LimJ K, ZhengG F, MirkinC ANature, 2011, 469: 516.

[29]

LimJ H, MirkinC AAdv. Mater., 2002, 14: 1474.

[30]

NoyA, MillerA E, KlareJ E, WeeksB L, WoodsB W, DeYoreoJ JNano Lett., 2002, 2: 109.

[31]

LeeK B, ParkS J, MirkinC A, SmithJ C, MrksichMScience, 2002, 295: 1702.

[32]

LeeK B, LimJ H, MirkinC AJ. Am. Chem. Soc., 2003, 125: 5588.

[33]

LimJ H, GingerD S, LeeK B, HeoJ, NamJ M, MirkinC AAngew. Chem. Int. Ed., 2003, 42: 2309.

[34]

DemersL M, GingerD S, ParkS J, LiZ, ChungS W, MirkinC AScience, 2002, 296: 1836.

[35]

WilsonD L, MartinR, HongS, Cronin-GolombM, MirkinC A, KaplanD LProc. Natl. Acad. Sci. USA, 2001, 98: 13660.

[36]

ChoY, IvanisevicA JPhys. Chem. B, 2004, 108: 15223.

[37]

JiangH Z, StuppS ILangmuir, 2005, 21: 5242.

[38]

LenhertS, SunP, WangY, FuchsH, MirkinC ASmall, 2007, 3: 71.

[39]

BianS, HeJ, SchesingK B, BraunschweigA BSmall, 2012, 8: 2000.

[40]

CheungC L, CamareroJ A, WoodsB W, LinT W, JohnsonJ E, De YoreoJ JJ. Am. Chem. Soc., 2003, 125: 6848.

[41]

SmithJ C, LeeK B, WangQ, FinnM G, JohnsonJ E, MrksichM, MirkinC ANano Lett., 2003, 3: 883.

[42]

RozhokS, ShenC K F, LittlerP L H, FanZ F, LiuC, MirkinC A, HolzR CSmall, 2005, 1: 445.

[43]

GundiahG, JohnN S, ThomasP J, KulkarniG U, RaoC N R, HeunSAppl. Phys. Lett., 2004, 84: 5341.

[44]

LiJ Y, LuC G, MaynorB, HuangS M, LiuJChem. Mater., 2004, 16: 1633.

[45]

DingL, LiY, ChuH B, LiX M, LiuJJ. Phys. Chem. B, 2005, 109: 22337.

[46]

SuM, LiuX G, LiS Y, DravidV P, MirkinC AJ. Am. Chem. Soc., 2002, 124: 1560.

[47]

FuL, LiuX G, ZhangY, DravidV P, MirkinC ANano Lett., 2003, 3: 757.

[48]

LiaoX, BrownK A, SchmuckerA L, LiuG, HeS, ShimW, MirkinC ANat. Commun., 2013, 4: 2103.

[49]

CarrollK M, GiordanoA J, WangD, KodaliV K, ScrimgeourJ, KingW P, MarderS R, RiedoE, CurtisJ ELangmuir, 2013, 29: 8675.

[50]

CarbonellC, VallesD, WongA M, CarliniA S, TouveM A, KorpantyJ, GianneschiN C, BraunschweigA BNat. Commun., 2020, 11: 1244.

[51]

LiY, MaynorB W, LiuJJ. Am. Chem. Soc., 2001, 123: 2105.

[52]

SheehanP E, WhitmanL J, KingW P, NelsonB AAppl. Phys. Lett., 2004, 85: 1589.

[53]

HuoF, ZhengG, LiaoX, GiamL R, ChaiJ, ChenX, ShimW, MirkinC ANat. Nanotechnol., 2010, 5: 637.

[54]

HuangZ, LiL, ZhangX A, AlsharifN, WuX, PengZ, ChengX, WangP, BrownK A, WangYAdv. Mater., 2018, 30: 1705303.

[55]

LeeS, ChoN P, KimJ D, JungH, KangS HAnalyst, 2009, 134: 933.

[56]

LenhertS, BrinkmannF, LaueT, WalheimS, VannahmeC, KlinkhammerS, XuM, SekulaS, MappesT, SchimmelT, FuchsHNat. Nanotechnol., 2010, 5: 275.

[57]

LaingS, IrvineE J, Hernandez-SantanaA, SmithW E, FauldsK, GrahamDAnal. Chem., 2013, 85: 5617.

[58]

ZhouD J, SinniahK, AbellC, RaymentTAngew. Chem. Int. Ed., 2003, 42: 4934.

[59]

LeeK B, KimE Y, MirkinC A, WolinskyS MNano Lett., 2004, 4: 1869.

[60]

BrinkmannF, HirtzM, HallerA, GorgesT M, VellekoopM J, RiethdorfS, MullerV, PantelK, FuchsHSci. Rep., 2015, 5: 15342.

[61]

SalaitaK, WangY, FragalaJ, VegaR A, LiuC, MirkinC AAngew. Chem. Int. Ed., 2006, 45: 7220.

[62]

LiuX, LiY, ZhengZNanoscale, 2010, 2: 2614.

[63]

XieZ, ChenC, ZhouX, GaoT, LiuD, MiaoQ, ZhengZACS Appl. Mater. Interfaces, 2014, 6: 11955.

[64]

LowryT W, PrommapanP, RainerQ, van WinkleD, LenhertSSensors, 2015, 15: 2086.

[65]

Basabe-DesmontsL, WuC C, van der WerfK O, PeterM, BenninkM, OttoC, VeldersA H, ReinhoudtD N, SubramaniamV, Crego-CalamaMChemPhysChem, 2008, 9: 1680.

[66]

Martinez-OteroA, HernandoJ, Ruiz-MolinaD, MaspochDSmall, 2008, 4: 2131.

[67]

MaX, LiF, XieZ, XueM, ZhengZ, ZhangXSoft Matter, 2017, 13: 3685.

[68]

CabezasM D, MirkinC A, MrksichMNano Lett., 2017, 17: 1373.

[69]

ManandharP, ChenK S, AledealatK, MihajlovicG, YunC S, FieldM, SullivanG J, StrouseG F, ChaseP B, von MolnarS, XiongPNanotechnology, 2009, 20: 355501.

[70]

LeeS, LeeS, KoY H, JungH, KimJ D, SongJ M, ChooJ, EoS K, KangS HTalanta, 2009, 78: 608.

[71]

ThompsonD G, McKennaE O, PittA, GrahamDBiosens. Bioelectron., 2011, 26: 4667.

[72]

PeterssonL, CoenM, AmroN A, TruedssonL, BorrebaeckC A K, WingrenCBioanalysis, 2014, 6: 1175.

[73]

PeterssonL, Dexlin-MellbyL, BengtssonA A, SturfeltG, BorrebaeckC A, WingrenCLab Chip, 2014, 14: 1931.

[74]

MitsakakisK, Sekula-NeunerS, LenhertS, FuchsH, GizeliEAnalyst, 2012, 137: 3076.

[75]

HirtzM, OikonomouA, GeorgiouT, FuchsH, VijayaraghavanANat. Commun., 2013, 4: 2591.

[76]

HirtzM, OikonomouA, ClarkN, KimY J, FuchsH, VijayaraghavanANanoscale, 2016, 8: 15147.

[77]

BogU, LaueT, GrossmannT, BeckT, WienholdT, RichterB, HirtzM, FuchsH, KaltH, MappesTLab Chip, 2013, 13: 2701.

[78]

LowryT W, HaririH, PrommapanP, Kusi-AppiahA, VafaiN, BienkiewiczE A, van WinkleD H, StaggS M, LenhertSSmall, 2016, 12: 506.

[79]

LiS F, SzegediS, GoluchE, LiuCAnal. Chem., 2008, 80: 5899.

[80]

StokesR J, DouganJ A, GrahamDChem. Commun., 2008, 44: 5734.

[81]

HeydariEPhotonic Nanostrut., 2019, 36: 100708.

[82]

RaniE, MohshimS A, AhmadM Z, GoodacreR, AhmadS A A, WongL SPolymers, 2019, 11: 561.

[83]

RuemmeleJ A, HallW P, RuvunaL K, van DuyneR PAnal. Chem., 2013, 85: 4560.

[84]

Sekula-NeunerS, MaierJ, OppongE, CatoA C, HirtzM, FuchsHSmall, 2012, 8: 585.

[85]

OppongE, HeddeP N, Sekula-NeunerS, YangL, BrinkmannF, DorlichR M, HirtzM, FuchsH, NienhausG U, CatoA CSmall, 2014, 10: 1991.

[86]

KumarR, BonicelliA, Sekula-NeunerS, CatoA C, HirtzM, FuchsHSmall, 2016, 12: 5330.

[87]

LiuH, LiuX, MengJ, ZhangP, YangG, SuB, SunK, ChenL, HanD, WangS, JiangLAdv. Mater., 2013, 25: 922.

[88]

ZhangP, ChenL, XuT, LiuH, LiuX, MengJ, YangG, JiangL, WangSAdv. Mater., 2013, 25: 3566.

[89]

LiY, LuQ, LiuH, WangJ, ZhangP, LiangH, JiangL, WangSAdv. Mater., 2015, 27: 6848.

[90]

MengJ, ZhangP, ZhangF, LiuH, FanJ, LiuX, YangG, JiangL, WangSACS Nano, 2015, 9: 9284.

[91]

WangS, LiuK, LiuJ, YuZ T F, XuX, ZhaoL, LeeT, LeeE K, ReissJ, LeeY-K, ChungL W K, HuangJ, RettigM, SeligsonD, DuraiswamyK N, ShenC K F, TsengH-RAngew. Chem. Int. Ed., 2011, 50: 3084.

[92]

WangS, WangH, JiaoJ, ChenK-J, OwensG E, KameiK-I, SunJ, ShermanD J, BehrenbruchC P, WuH, TsengH-RAngew. Chem. Int. Ed., 2009, 48: 8970.

[93]

LiuH Y, KochC, HallerA, JoosseS A, KumarR, VellekoopM J, HorstL J, KellerL, BabayanA, FaillaA V, JensenJ, PeineS, KeplingerF, FuchsH, PantelK, HirtzMAdv. Biosyst., 2020, 4: 1900162.

[94]

BrinkmannF, HirtzM, GreinerA M, WeschenfelderM, WaterkotteB, BastmeyerM, FuchsHSmall, 2013, 9: 3266.

[95]

CarbonellC, VallesD J, WongA M, TsuiM W, NiangM, BraunschweigA BChem, 2018, 4: 857.

[96]

ZhengZ, DanielW L, GiamL R, HuoF, SenesiA J, ZhengG, MirkinC AAngew. Chem. Int. Ed., 2009, 48: 7626.

[97]

KumarR, WeigelS, MeyerR, NiemeyerC M, FuchsH, HirtzMChem. Commun., 2016, 52: 12310.

[98]

RadhaB, LiuG, EichelsdoerferD J, KulkarniG U, MirkinC AACS Nano, 2013, 7: 2602.

[99]

ZhaoJ, SwartzL A, LinW-F, SchlenoffP S, FrommerJ, SchlenoffJ B, LiuG-YACS Nano, 2016, 10: 5656.

[100]

XiongE, JiangL, TianT, HuM, YueH, HuangM, LinW, JiangY, ZhuD, ZhouXAngew. Chem. Int. Ed., 2021, 60: 5307.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/