Surface-enhanced Raman Scattering Technology Based on WO3 Film for Detection of VEGF

Xiaoyan Liu , Yan Zhou , Tingting Zheng , Yang Tian

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 900 -905.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 900 -905. DOI: 10.1007/s40242-021-1192-5
Article

Surface-enhanced Raman Scattering Technology Based on WO3 Film for Detection of VEGF

Author information +
History +
PDF

Abstract

With the advancement of nanomaterials for surface-enhanced Raman scattering(SERS) detection, a deeper understanding of the chemical mechanism(CM) and further applications has been achieved. Herein, we prepared a porous tungsten trioxide(WO3) film by the pulse electrodeposition method, and constructed a WO3 film SERS aptasensor. With methylene blue(MB) as the adsorption molecule, the developed WO3 film SERS aptasensor revealed remarkable Raman activity. Through experimental data and theoretical calculations, we found that the significant SERS enhancement[enhancement factor(EF)=1.5× 106] was due to the CM based on charge transfer and molecular resonance. Utilizing the Raman response of MB on the WO3 film and specific aptamers, we successfully developed the aptamer sensor by covalently attaching the MB modified aptamer to the WO3 film. The sensor realized the specific and sensitive determination of vascular endothelial growth factor(VEGF) with the detection limit down to 8.7 pg/mL. In addition, the developed aptasensor indicated the excellent selectivity among other interferences, such as metal ions, reactive oxygen species(ROS), and proteins. This WO3 film SERS aptasensor not only contributed to the study of the enhancement mechanism of semiconductor material, but also provided a powerful platform for the sensitive detection of VEGF, possessing a great potential in the real-time monitoring of biomarkers of glioblastoma in vitro.

Keywords

Glioblastoma / WO3 / Charge transfer / Vascular endothelial growth factor(VEGF) / Surface-enhanced Raman scattering

Cite this article

Download citation ▾
Xiaoyan Liu, Yan Zhou, Tingting Zheng, Yang Tian. Surface-enhanced Raman Scattering Technology Based on WO3 Film for Detection of VEGF. Chemical Research in Chinese Universities, 2021, 37(4): 900-905 DOI:10.1007/s40242-021-1192-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Deriu C, Conticello I, Mebel A M, Mccord B. Anal. Chem., 2019, 91: 4780.

[2]

Zong C, Xu M X, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B. Chem. Rev., 2018, 118: 4946.

[3]

Kneipp J, Kneipp H, Kneipp K. Chem. Soc. Rev., 2008, 37: 1052.

[4]

Sharma B, Frontiera R R, Henry A I, Ringe E, Van Duyne R P. Mater. Today, 2012, 15: 16.

[5]

Lan L L, Fan X C, Gao Y M, Li G Q, Hao Q, Qiu T. J. Mater. Chem. C, 2020, 8: 14523.

[6]

Keshavarz M, Tan B, Venkatakrishnan K. ACS Appl. Mater. Interfaces, 2018, 10: 34886.

[7]

Wang X Y, Li J, Shen Y H, Xie A J. Appl. Surf. Sci., 2019, 504: 144073.

[8]

Han X X, Ji W, Zhao B, Ozaki Y. Nanoscale, 2017, 9: 4847.

[9]

Cong S, Yuan Y Y, Chen Z G, Hou J Y, Yang M, Su Y L, Zhang Y Y, Li L, Li Q W, Geng F X, Zhao Z G. Nat. Comm., 2015, 6: 7800.

[10]

Fan X C, Li M Z, Hao Q, Zhu M S, Hou X Y, Huang H, Ma L B, Schmidt O G, Qiu T. Adv. Mater. Interfaces, 2019, 6: 19011338.

[11]

Hoeben A, Landuyt B, Highley M S, Wildiers H, Van Oosterom A T, de Bruijin E A. Pharmacol. Rev., 2004, 56: 549.

[12]

Freeman R, Girsh J, Jou A F J, Ho J A A, Hug T, Dernedde J, Willner I. Anal. Chem., 2012, 84: 6192.

[13]

Rubenstein J L, Kim J, Ozawa T, Zhang M, Westphal M, Deen D F, Shuman M A. Neoplasia, 2000, 2: 306.

[14]

Hicklin D J, Ellis L M. J. Clin. Oncol., 2005, 23: 1011.

[15]

Mita C, Abe K, Fukaya T, Ikebukuro K. Materials, 2014, 7: 1046.

[16]

Man J, Dong J J, Wang Y L, He L L, Yu S C, Yu F, Wang J, Tian Y M, Liu L, Han R P, Guo H C, Wu Y J, Qu L B. Int. J. Nanomed., 2020, 15: 9975.

[17]

Wang S, Lu H, Wang L, Zou J P, Zhang R. Anal. Lett., 2020, 54: 1233.

[18]

Zhao S, Yang W W, Lai RY. Biosens. Bioelectron., 2011, 26: 2442.

[19]

Fu X M, Liu Z J, Cai S X, Zhao Y P, Wu D Z, Li C Y, Chen J H. Chin. Chem. Lett., 201, 27: 920.

[20]

Cai G F, Cui M Q, Kumar V, Darmawan P, Wang J X, Wang X, Lee-Sie E A, Qian K, Lee P S. Chem. Sci., 201, 7: 13.

[21]

Xie Y P, Liu G, Yin L C, Chen H M. J. Mater. Chem., 2012, 22: 6746.

[22]

Boulovan M, Lucazeauw G. J. Solid State Chem., 2002, 167: 425.

[23]

Acero Sánchez J L, Baldrich E, Radi A E, Dondapati S, Sánchez P L, Kataki I, O’Sullivan C K. Electroanalysis, 200, 18: 1957.

[24]

Radi A E, Acero Sánchez J L, Baldrich E, O’Sullivan C K. J. Am. Chem. Soc., 200, 128: 117.

[25]

Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. J. Am. Chem. Soc., 2007, 129: 1042.

[26]

Moskovits M. Rev. Mod. Phys., 1985, 57: 783.

[27]

Campion A, Ivanecky J E III, Child C M, Foster M. J. Am. Chem. Soc., 1995, 117: 11807.

[28]

Wang X T, Guo L. Angew. Chem. Int. Ed., 2020, 59: 4231.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/