In situ Activatable Peptide-based Nanoprobes for Tumor Imaging

Zhiyu Liu , Gaolin Liang , Wenjun Zhan

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 889 -899.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 889 -899. DOI: 10.1007/s40242-021-1181-8
Review

In situ Activatable Peptide-based Nanoprobes for Tumor Imaging

Author information +
History +
PDF

Abstract

Owing to its excellent biological properties, peptide has been widely used in the design of nanoprobes capable of enhancing tumor imaging signals. In recent years, a number of peptide-based nanoprobes with strong loading capacity and great biocompatibility have been developed for precision tumor imaging by coupling peptide motifs with different imaging agents. It is worth noting that, compared with “always on” mode, the use of stimulus-mediated in situ activatable mode to design and control the self-assembly or nanostructure transformation of peptide-based nanoprobes in vivo can achieve the significant improvement of imaging efficiency. Herein, we summarize the recent progress of in situ activatable peptide-based nanoprobes for tumor imaging in diverse imaging modes, including magnetic resonance imaging(MRI), fluorescence imaging(FI), photoacoustic imaging(PAI), radionuclide imaging(RI) and multimodal imaging. Finally, we briefly prospect the challenges and potential development directions of this field.

Keywords

Tumor imaging / Peptide-based nanoprobe / In situ activatable / Self-assembly

Cite this article

Download citation ▾
Zhiyu Liu, Gaolin Liang, Wenjun Zhan. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging. Chemical Research in Chinese Universities, 2021, 37(4): 889-899 DOI:10.1007/s40242-021-1181-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weissleder R, Pittet M J. Nature, 2008, 452: 580.

[2]

Wang Y, Zhou K, Huang G, Hensley C, Huang X, Ma X, Zhao T, Sumer B D, Deberardinis R J, Gao J. Nat. Mater., 2014, 13: 204.

[3]

Chen Q, Liu X, Chen J, Zeng J, Cheng Z, Liu Z. Adv. Mater., 2015, 27: 6820.

[4]

Huang X, Song J, Yung B C, Huang X, Xiong Y, Chen X. Chem. Soc. Rev., 2018, 47: 2873.

[5]

Song Z, Mao D, Sung S H P, Kwok R T K, Lam J W Y, Kong D, Ding D, Tang B Z. Adv. Mater., 201, 28: 7249.

[6]

Li P, Liu L, Xiao H, Zhang W, Wang L, Tang B. J. Am. Chem. Soc., 201, 138: 2893.

[7]

Xu J, Fang L, Shi M, Huang Y, Yao L, Zhao S, Zhang L, Liang H. Chem. Commun., 2019, 55: 1651.

[8]

Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294: 1684.

[9]

Cavalli S, Albericio F, Kros A. Chem. Soc. Rev., 2010, 39: 241.

[10]

Dehsorkhi A, Castelletto V, Hamley I W. J. Pept. Sci., 2014, 20: 453.

[11]

Paramonov S E, Jun H-W, Hartgerink J D. J. Am. Chem. Soc., 200, 128: 7291.

[12]

Percec V, Dulcey A E, Balagurusamy V S K, Miura Y, Smidrkal J, Peterca M, Nummelin S, Edlund U, Hudson S D, Heiney P A, Duan H, Magonov S N, Vinogradov S A. Nature, 2004, 430: 764.

[13]

Fleming S, Ulijn R V. Chem. Soc. Rev., 2014, 43: 8150.

[14]

Tatko C D, Waters M L. J. Am. Chem. Soc., 2002, 124: 9372.

[15]

Waters M L. Biopolymers, 2004, 76: 435.

[16]

Andrew Mackay J, Chen M, McDaniel J R, Liu W, Simnick A J, Chilkoti A. Nat. Mater., 2009, 8: 993.

[17]

Deming T J. Prog. Polym. Sci., 2007, 32: 858.

[18]

Chandler D. Nature, 2005, 437: 640.

[19]

Sánchez-Iglesias A, Grzelczak M, Altantzis T, Goris B, Pérez-Juste J, Bals S, Van Tendeloo G, Donaldson S H, Chmelka B F, Israelachvili J N, Liz-Marzán L M. ACS Nano, 2012, 6: 11059.

[20]

Caplan M R, Moore P N, Zhang S, Kamm R D, Lauffenburger D A. Biomacromolecules, 2000, 1: 627.

[21]

Kalsin A M, Fialkowski M, Paszewski M, Smoukov S K, Bishop K J M, Grzybowski B A. Science, 200, 312: 420.

[22]

Niece K L, Hartgerink J D, Donners J J J M, Stupp S I. J. Am. Chem. Soc., 2003, 125: 7146.

[23]

Sherrington D C, Taskinen K A. Chem. Soc. Rev., 2001, 30: 83.

[24]

Au-Yeung H-L, Leung S Y-L, Tam A Y-Y, Yam V W-W. J. Am. Chem. Soc., 2014, 136: 17910.

[25]

Ni D, Zhang J, Bu W, Xing H, Han F, Xiao Q, Yao Z, Chen F, He Q, Liu J, Zhang S, Fan W, Zhou L, Peng W, Shi J. ACS Nano, 2014, 8: 1231.

[26]

Riehemann K, Schneider S W, Luger T A, Godin B, Ferrari M, Fuchs H. Angew. Chem. Int. Ed., 2009, 48: 872.

[27]

Fang H, Li M, Liu Q, Gai Y, Yuan L, Wang S, Zhang X, Ye M, Zhang Y, Gao M, Hou Y, Lan X. Nano-Micro. Lett., 2020, 12: 62.

[28]

Wang Y, Du W, Zhang T, Zhu Y, Ni Y, Wang C, Sierra Raya F M, Zou L, Wang L, Liang G. ACS Nano, 2020, 14: 9585.

[29]

Zhang L, Jing D, Jiang N, Rojalin T, Baehr C M, Zhang D, Xiao W, Wu Y, Cong Z, Li J J, Li Y, Wang L, Lam K S. Nat. Nanotechnol., 2020, 15: 145.

[30]

Wang H, Zhao Y, An H-W, Zheng R, Yang J, Mamuti M, Hou D. Angew. Chem. Int. Ed., 2021, 60: 7809.

[31]

Wang Y, Li X, Chen P, Dong Y, Liang G, Yu Y. Nanoscale, 2020, 12: 1886.

[32]

Chen K, Conti P S. Adv. Drug Deliv. Rev., 2010, 62: 1005.

[33]

Cai W, Shin D-W, Chen K, Gheysens O, Cao Q, Wang S X, Gambhir S S, Chen X. Nano. Lett., 200, 6: 669.

[34]

Zhao Y, Ji T, Wang H, Li S, Zhao Y, Nie G. J. Control. Release, 2014, 177: 11.

[35]

Deng Y, Zhan W, Liang G. Adv. Healthcare Mater., 2021, 10: 2001211.

[36]

Lyu Y, Pu K. Adv. Sci., 2017, 4: 1600481.

[37]

Lu Y, Aimetti A A, Langer R, Gu Z. Nat. Rev. Mater., 201, 2: 16075.

[38]

Rosenkrans Z T, Ferreira C A, Ni D, Cai W. Adv. Healthc. Mater., 2021, 10: 2000690.

[39]

Beets-Tan R G H, Beets G L, Vliegen R F A, Kessels A G H, Boven H V, Bruine A D, von Meyenfeldt M F, Baeten C, van Engelshoven J M A. Lancet, 2001, 357: 497.

[40]

Day S E, Kettunen M I, Gallagher F A, Hu D-E, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen J H, Brindle K M. Nat. Med., 2007, 13: 1382.

[41]

Caravan P. Chem. Soc. Rev., 200, 35: 512.

[42]

Lee N, Hyeon T. Chem. Soc. Rev., 2012, 41: 2575.

[43]

Na H B, Song I C, Hyeon T. Adv. Mater., 2009, 21: 2133.

[44]

Liang G, Ronald J, Chen Y, Ye D, Pandit P, Ma M L, Rutt B, Rao J. Angew. Chem. Int. Ed., 2011, 50: 6283.

[45]

Zhang J, Mu Y-L, Ma Z-Y, Han K, Han H-Y. Biomaterials, 2018, 182: 269.

[46]

Dong L, Qian J, Hai Z, Xu J, Du W, Zhong K, Liang G. Anal. Chem., 2017, 89: 6922.

[47]

Zheng Z, Sun H, Hu C, Li G, Liu X, Chen P, Cui Y, Liu J, Wang J, Liang G. Anal. Chem., 201, 88: 3363.

[48]

Kenry, Duan Y, Liu B. Adv. Mater., 2018, 30: 1802394.

[49]

Li Y, Zhong H, Huang Y, Zhao R. Molecules, 2019, 24: 4593.

[50]

Huang M, Yu R, Xu K, Ye S, Kuang S, Zhu X, Wan Y. Chem. Sci., 201, 7: 4485.

[51]

Zhou J, Du X, Berciu C, He H, Shi J, Nicastro D, Xu B. Chem, 201, 1: 246.

[52]

He H, Wang J, Wang H, Zhou N, Yang D, Green D R, Xu B. J. Am. Chem. Soc., 2018, 140: 1215.

[53]

Yang L, Peltier R, Zhang M, Song D, Huang H, Chen G, Chen Y, Zhou F, Hao Q, Bian L, He M-L, Wang Z, Hu Y, Sun H. J. Am. Chem. Soc., 2020, 142: 18150.

[54]

Wang Y, Zhan J, Chen Y, Ai S, Li L, Wang L, Shi Y, Zheng J, Yang Z. Nanoscale, 2019, 11: 13714.

[55]

Hao Y, Xu S, Chen M, Qian J, Tang B. Chem. Res. Chinese Universities, 2021, 37(1): 25.

[56]

Yang L, Guo L, Yu H, Wang G, Sun J, Zhang P, Gu X, Tang B. Chem. Res. Chinese Universities, 2021, 37(1): 129.

[57]

Zhan F-K, Liu J-C, Cheng B, Liu Y-C, Lai T-S, Lin H-C, Yeh M-Y. Chem. Commun., 2019, 55: 1060.

[58]

Hu X-X, He P-P, Qi G-B, Gao Y-J, Lin Y-X, Yang C, Yang P-P, Hao H, Wang L, Wang H. ACS Nano, 2017, 11: 4086.

[59]

Wang L, Lv Y, Li C, Yang G, Fu B, Peng Q, Jian L, Hou D, Wang J, Zhao C, Yang P, Zhang K, Wang L, Wang Z, Wang H, Xu W. Small, 2020, 16: 2004548.

[60]

Lin Y-X, Qiao S-L, Wang Y, Zhang R-X, An H-W, Ma Y, Rajapaksha R Y J, Qiao Z-Y, Wang L, Wang H. ACS Nano, 2017, 11: 1826.

[61]

Hong G, Antaris A L, Dai H. Nat. Biomed. Eng, 2017, 1: 0010.

[62]

Wu L, Ishigaki Y, Hu Y, Sugimoto K, Zeng W, Harimoto T, Sun Y, He J, Suzuki T, Jiang X, Chen H-Y, Ye D. Nat. Commun., 2020, 11: 446.

[63]

Luo Z, Huang Z, Li K, Sun Y, Lin J, Ye D, Chen H-Y. Anal. Chem., 2018, 90: 2875.

[64]

Zhao X-X, Li L-L, Zhao Y, An H-W, Cai Q, Lang J-Y, Han X-X, Peng B, Fei Y, Liu H, Qin H, Nie G, Wang H. Angew. Chem. Int. Ed., 2019, 58: 15287.

[65]

An H-W, Li L-L, Wang Y, Wang Z, Hou D, Lin Y-X, Qiao S-L, Wang M-D, Yang C, Cong Y, Ma Y, Zhao X-X, Cai Q, Chen W-T, Lu C-Q, Xu W, Wang H, Zhao Y. Nat. Commun., 2019, 10: 4861.

[66]

Liu F-H, Cong Y, Qi G-B, Ji L, Qiao Z-Y, Wang H. Nano Lett., 2018, 18: 6577.

[67]

Cheng D-B, Zhang X-H, Chen Y, Chen H, Qiao Z-Y, Wang H. iScience, 2020, 23: 101144.

[68]

Chen S, Liu J, Li Y, Wu X, Yuan Q, Yang R, Zheng J. TrAC, Trends Anal. Chem., 2020, 131: 116010.

[69]

Liu J-N, Bu W, Shi J. Chem. Rev., 2017, 117: 6160.

[70]

Huang C, Zheng J, Ma D, Liu N, Zhu C, Li J, Yang R. J. Mat. Chem. B, 2018, 6: 6424.

[71]

Xu C, Zou H, Zhao Z, Zhang P, Kwok R T K, Lam J W Y, Sung H H Y, Williams I D, Tang B Z. Adv. Funct. Mater., 2019, 29: 1903278.

[72]

Zhang Z, Wang R, Huang X, Zhu W, He Y, Liu W, Liu F, Feng F, Qu W. Anal. Chem., 2021, 93: 1627.

[73]

Li L-L, Qiao S-L, Liu W-J, Ma Y, Wan D, Pan J, Wang H. Nat. Commun., 2017, 8: 1276.

[74]

Peng B, Zhao X, Yang M S, Li L L. J. Mat. Chem. B, 2019, 7: 5626.

[75]

Li J, Shi K, Sabet Z F, Fu W, Zhou H, Xu S, Liu T, You M, Cao M, Xu M, Cui X, Hu B, Liu Y, Chen C. Sci. Adv., 2019, 5: eaax0937.

[76]

Fan Y, Lu M, Yu X-A, He M, Zhang Y, Ma X-N, Kou J, Yu B-Y, Tian J. Anal. Chem., 2019, 91: 6585.

[77]

Wang L V, Hu S. Science, 2012, 335: 1458.

[78]

Chen G, Roy I, Yang C, Prasad P N. Chem. Rev., 201, 116: 2826.

[79]

Zhang D, Qi G B, Zhao Y X, Qiao S L, Yang C, Wang H. Adv. Mater., 2015, 27: 6078.

[80]

Wang Y, Hu X, Weng J, Li J, Fan Q, Zhang Y, Ye D. Angew. Chem. Int. Ed., 2019, 131: 4940.

[81]

Huang P, Gao Y, Lin J, Hu H, Liao H-S, Yan X, Tang Y, Jin A, Song J, Niu G, Zhang G, Horkay F, Chen X. ACS Nano, 2015, 9: 9517.

[82]

Wu C, Zhang R, Du W, Cheng L, Liang G. Nano Lett., 2018, 18: 7749.

[83]

Baum R P, Kulkarni H R. Theranostics, 2012, 2: 437.

[84]

Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon M P, Tian M, Liang D, Li C. J. Am. Chem. Soc., 2010, 132: 15351.

[85]

Simone E A, Zern B J, Chacko A-M, Mikitsh J L, Blankemeyer E R, Muro S, Stan R V, Muzykantov V R. Biomaterials, 2012, 33: 5406.

[86]

Preshlock S, Tredwell M, Gouverneur V. Chem. Rev., 201, 116: 719.

[87]

Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, Adeberg S, Rathke H, Röhrich M, Winter H, Plinkert P K, Marme F, Lang M, Kauczor H-U, Jäger D, Debus J, Haberkorn U, Giesel F L. J. Nucl. Med., 2019, 60: 801.

[88]

Bensch F, Van Der Veen E L, Lub-De Hooge M N, Jorritsma-Smit A, Boellaard R, Kok I C, Oosting S F, Schröder C P, Hiltermann T J N, Van Der Wekken A J, Groen H J M, Kwee T C, Elias S G, Gietema J A, Bohorquez S S, De Crespigny A, Williams S-P, Mancao C, Brouwers A H, Fine B M, De Vries E G E. Nat. Med., 2018, 24: 1852.

[89]

Ardakani J B, Akhlaghi M, Nikkholgh B, Hosseinimehr S J. Bioorg. Chem., 2021, 106: 104474.

[90]

Carlomagno N, Incollingo P, Tammaro V, Peluso G, Rupealta N, Chiacchio G, Sandoval Sotelo M L, Minieri G, Pisani A, Riccio E. Biomed Res. Int., 2017, 2017: 7869802.

[91]

Wang H, Chen P, Wu H, Zou P, Wu J, Liu Y, Liang G. Anal. Chem., 2019, 91: 14842.

[92]

Shen B, Jeon J, Palner M, Ye D, Shuhendler A, Chin F T, Rao J. Angew. Chem. Int. Ed., 2013, 52: 10511.

[93]

Palner M, Shen B, Jeon J, Lin J, Chin F T, Rao J. J. Nucl. Med., 2015, 56: 1415.

[94]

Chen Z, Chen M, Zhou K, Rao J. Angew. Chem. Int. Ed., 2020, 132: 7938.

[95]

Hussain T, Nguyen Q T. Adv. Drug Deliv. Rev., 2014, 66: 90.

[96]

Louie A. Chem. Rev., 2010, 110: 3146.

[97]

Lee H-Y, Li Z, Chen K, Hsu A R, Xu C, Xie J, Sun S, Chen X. J. Nucl. Med., 2008, 49: 1371.

[98]

Zhang D, Qi G-B, Zhao Y-X, Qiao S-L, Yang C, Wang H. Adv. Mater., 2015, 27: 6125.

[99]

Lee J, Lee T S, Ryu J, Hong S, Kang M, Im K, Kang J H, Lim S M, Park S, Song R. J. Nucl. Med., 2013, 54: 96.

[100]

de Jong M, Breeman W A P, Kwekkeboom D J, Valkema R, Krenning E P. Acc. Chem. Res., 2009, 42: 873.

[101]

Lee S, Xie J, Chen X. Chem. Rev., 2010, 110: 3087.

[102]

Zhang P, Cui Y, Anderson C F, Zhang C, Li Y, Wang R, Cui H. Chem. Soc. Rev., 2018, 47: 3490.

[103]

Wang W, Ma Z, Zhu S, Wan H, Yue J, Ma H, Ma R, Yang Q, Wang Z, Li Q, Qian Y, Yue C, Wang Y, Fan L, Zhong Y, Zhou Y, Gao H, Ruan J, Hu Z, Liang Y, Dai H. Adv. Mater., 2018, 30: 1800106.

[104]

Cheng Y, Meyers J D, Agnes R S, Doane T L, Kenney M E, Broome A-M, Burda C, Basilion J P. Small, 2011, 7: 2301.

[105]

Kumar S R, Gallazzi F A, Ferdani R, Anderson C J, Quinn T P, Deutscher S L. Cancer Biother. Radiopharm., 2010, 25: 693.

[106]

Lemaster J E, Wang Z, Hariri A, Chen F, Hu Z, Huang Y, Barback C V, Cochran R, Gianneschi N C, Jokerst J V. Chem. Mat., 2018, 31: 251.

[107]

Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W. J. Am. Chem. Soc., 2014, 136: 11220.

[108]

Sowers M A, McCombs J R, Wang Y, Paletta J T, Morton S W, Dreaden E C, Boska M D, Ottaviani M F, Hammond P T, Rajca A. Nat. Commun., 2014, 5: 1.

[109]

Shi H, Sun Y, Yan R, Liu S, Zhu L, Liu S, Feng Y, Wang P, He J, Zhou Z, Ye D. Nano Lett., 2019, 19: 937.

[110]

An R, Cheng X, Wei S, Hu Y, Sun Y, Huang Z, Chen H Y, Ye D. Angew. Chem. Int. Ed., 2020, 132: 20817.

[111]

Gao H, Chu C, Cheng Y, Zhang Y, Pang X, Li D, Wang X, Ren E, Xie F, Bai Y, Chen L, Liu G, Wang M. ACS Appl. Mater. Interfaces, 2020, 12: 26880.

[112]

Yin L, Sun H, Zhang H, He L, Qiu L, Lin J, Xia H, Zhang Y, Ji S, Shi H, Gao M. J. Am. Chem. Soc., 2019, 141: 3265.

[113]

Zhang Y, Chang J, Huang F, Yang L, Ren C, Ma L, Zhang W, Dong H, Liu J, Liu J. ACS Biomater. Sci. Eng., 2019, 5: 1589.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/