A Pretargeting Strategy Enabled by Bioorthogonal Reactions Towards Advanced Nuclear Medicines: Application and Perspective

Yun Gao , Lei Chen , Jianxian Ge , Jiabin Cui , Jianfeng Zeng , Mingyuan Gao

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 870 -879.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 870 -879. DOI: 10.1007/s40242-021-1179-2
Review

A Pretargeting Strategy Enabled by Bioorthogonal Reactions Towards Advanced Nuclear Medicines: Application and Perspective

Author information +
History +
PDF

Abstract

Pretargeting is an innovative and promising approach in nuclear medicine for targeted-imaging/therapy through the following bioorthogonal reactions. It requires two reactive participants, one of which is a targeting vector and the other is a small radiolabeled probe capable of specifically coupling through bioorthogonal reactions with the targeting vector accumulated in the disease site. Compared to the conventional direct targeting approach, such a two-step scheme conceptually can achieve a higher imaging contrast and an improved therapeutic effect owing to the suppressed non-specific targeting. In this review, we will first give a brief introduction on pretargeting systems and the history of bioorthogonal reactions, and then focus on some important works about radionuclide delivering through the bioorthogonal reaction based pretargeting strategy. Finally, we will discuss the steps forward in respect to the future clinical translation and truly hope that this methodology would continue to make contributions to nuclear medicines.

Keywords

Pretargeting / Bioorthogonal reaction / Nuclear medicine

Cite this article

Download citation ▾
Yun Gao, Lei Chen, Jianxian Ge, Jiabin Cui, Jianfeng Zeng, Mingyuan Gao. A Pretargeting Strategy Enabled by Bioorthogonal Reactions Towards Advanced Nuclear Medicines: Application and Perspective. Chemical Research in Chinese Universities, 2021, 37(4): 870-879 DOI:10.1007/s40242-021-1179-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hapuarachchige S, Huang C T, Donnelly M C, Barinka C, Lupold S E, Pomper M G, Artemov D. Mol. Pharm., 2020, 17(1): 98.

[2]

Dewulf J, Adhikari K, Vangestel C, Wyngaert T V D, Elvas F. Cancers, 2020, 12(7): 1868.

[3]

Lubic S P, Goodwin D A, Meares C F, Song C, Osen M, Hays M. J. Nucl. Med., 2001, 42(4): 670.

[4]

Bailly C, Bodet-Milin C, Rousseau C, Faivre-Chauvet A, Kraeber-Bodere F, Barbet J. EJNMMI Radiopharm. Chem., 2017, 2(1): 6.

[5]

Patra M, Zarschler K, Pietzsch H J, Stephan H, Gasser G. Chem. Soc. Rev., 201, 45(23): 6415.

[6]

Foubert F, Gouard S, Maurel C S, Chérel M, Chauvet A F, Goldenberg D M. Oncotarget, 2018, 9(44): 27502.

[7]

Karacay H, Sharkey R M, Gold D V, Ragland D R, McBride W J, Rossi E A, Chang C H, Goldenberg D M. J. Nucl. Med., 2009, 50(12): 2008.

[8]

Hong Z, Deng S, Shi Y, Xie Y, You J, Wang W, Huang H, Liu Z. J. Int. Med. Res., 2020, 48(7): 1.

[9]

Zhu W, Okollie B, Bhujwalla Z M, Artemov D. Magn. Reson. Med., 2008, 59(4): 679.

[10]

Westerlund K, Altai M, Mitran B, Konijnenberg M, Oroujeni M, Atterby C, de Jong M, Orlova A, Mattsson J, Micke P, Karlstrom A E, Tolmachev V. J. Nucl. Med., 2018, 59(7): 1092.

[11]

Westerlund K, Vorobyeva A, Mitran B, Orlova A, Tolmachev V, Karlstrom A E, Altai M. Biomaterials, 2019, 203: 73.

[12]

Devaraj N K, Weissleder R. Acc. Chem. Res., 2011, 44(9): 816.

[13]

Wilbur D S, Hamlin D K, Chyan M K, Kegley B B, Pathare P M. Bioconjug. Chem., 2001, 12(4): 616.

[14]

Wang F, Zhang Y, Liu Z, Du Z, Zhang L, Ren J, Qu X. Angew. Chem. Int. Ed., 2019, 58(21): 6987.

[15]

Liu G, Wold E A, Zhou J. Curr. Top. Med. Chem., 2019, 19(11): 892.

[16]

Fink J, Schumacher F, Schlegel J, Stenzel P, Wigger D, Sauer M, Kleuser B, Seibel J. Org. Biomol. Chem., 2021, 19(10): 2203.

[17]

Krell K, Harijan D, Ganz D, Doll L, Wagenknecht H A. Bioconjug. Chem., 2020, 31(4): 990.

[18]

Gupta K, Toombes G E, Swartz K J. Elife, 2019, 8: e50776.

[19]

Hansell C F, Espeel P, Stamenovic M M, Barker I A, Dove A P, Du Prez F E, O’Reilly R K. J. Am. Chem. Soc., 2011, 133(35): 13828.

[20]

Zuo L, Ding J, Li C, Lin F, Chen P R, Wang P, Lu G, Zhang J, Huang L-L, Xie H-Y. Chem. Sci., 2020, 11(8): 2155.

[21]

Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004.

[22]

Huisgen R. Angew. Chem. Int. Ed., 1963, 2(10): 565.

[23]

Knight J C, Cornelissen B. Am. J. Nucl. Med. Mol. Imaging, 2014, 4(2): 96.

[24]

Carroll L, Evans H L, Aboagye E O, Spivey A C. Org. Biomol. Chem., 2013, 11(35): 5772.

[25]

Lin F, Chen L, Zhang H, Ngai W S C, Zeng X, Lin J, Chen P R. CCS Chemistry, 2019, 1(2): 226.

[26]

Yao Q X, Lin F, Fan X Y, Wang Y P, Liu Y, Liu Z F, Jiang X Y, Chen P R, Gao Y. Nat. Commun., 2018, 9(1): 5032.

[27]

Li J, Chen P R. Nat. Chem. Biol., 201, 12(3): 129.

[28]

Peplow M. C&EN Global Enterprise, 2020, 98: 5.

[29]

Ramil C P, Lin Q. Curr. Opin. Chem. Biol., 2014, 21: 89.

[30]

Saxon E, Bertozzi C R. Science, 2000, 287(5460): 2007.

[31]

Lin F L, Hoyt H M, Halbeek V H, Bergman R G, Bertozzi C R. J. Am. Chem. Soc., 2005, 127(8): 2686.

[32]

Rostovtsev V V, Green L G, Fokin V V, Sharpless K B. Angew. Chem. Int. Ed., 2002, 41(14): 2596.

[33]

Tornøe C W, Christensen C, Meldal M. J. Org. Chem., 2002, 67(9): 3057.

[34]

Agard N J, Prescher J A, Bertozzi C R. J. Am. Chem. Soc., 2004, 126(46): 15046.

[35]

Sletten E M, Bertozzi C R. Acc. Chem. Res., 2011, 44(9): 666.

[36]

Thalhammer F, Wallfahrer U, Sauer J. Tetrahedron Lett., 1990, 31(47): 6851.

[37]

Blackman M L, Royzen M, Fox J M. J. Am. Chem. Soc., 2008, 130(41): 13518.

[38]

Rossin R, Verkerk P R, van den Bosch S M, Vulders R C, Verel I, Lub J, Robillard M S. Angew. Chem. Int. Ed., 2010, 49(19): 3375.

[39]

Pressman D. Ann. N. Y. Acad. Sci., 1955, 59(3): 376.

[40]

Kohler G, Milstein C. Nature, 1975, 256: 495.

[41]

Wei W, Rosenkrans Z T, Liu J, Huang G, Luo Q Y, Cai W. Chem. Rev., 2020, 120(8): 3787.

[42]

Rondon A, Degoul F. Bioconjug. Chem., 2020, 31(2): 159.

[43]

Vugts D J, Vervoort A, Stigter-van Walsum M, Visser G W, Robillard M S, Versteegen R M, Vulders R C, Herscheid J K, van Dongen G A. Bioconjug. Chem., 2011, 22(10): 2072.

[44]

Baskin J M, Prescher J A, Laughlin S T, Agard N J, Chang P V, Miller I A, Lo A, Codelli J A, Bertozzi C R. Proc. Natl. Acad. Sci. USA, 2007, 104(43): 16793.

[45]

van den Bosch S M, Rossin R, Verkerk P R, ten Hoeve W, Janssen H M, Lub J, Robillard M S. Nucl. Med. Biol., 2013, 40(3): 415.

[46]

Au K M, Tripathy A, Lin C P-I, Wagner K, Hong S, Wang A Z, Park S I. ACS Nano, 2018, 12(2): 1544.

[47]

Altai M, Membreno R, Cook B, Tolmachev V, Zeglis B M. J. Nucl. Med., 2017, 58(10): 1553.

[48]

Zeglis B M, Sevak K K, Reiner T, Mohindra P, Carlin S D, Zanzonico P, Weissleder R, Lewis J S. J. Nucl. Med., 2013, 54(11): 1389.

[49]

Houghton J L, Membreno R, Abdel-Atti D, Cunanan K M, Carlin S, Scholz W W, Zanzonico P B, Lewis J S, Zeglis B M. Mol. Cancer Ther., 2017, 16(1): 124.

[50]

Rossin R, Lappchen T, van den Bosch S M, Laforest R, Robillard M S. J. Nucl. Med., 2013, 54(11): 1989.

[51]

Johnson D A, Barton R L, Fix D V, Scott W L, Gutowski M C. Cancer Res., 1991, 51: 5774.

[52]

Kholodenko R V, Kalinovsky D V, Doronin I I, Ponomarev E D, Kholodenko I V. Curr. Med. Chem., 2019, 26(3): 396.

[53]

van Duijnhoven S M, Rossin R, van den Bosch S M, Wheatcroft M P, Hudson P J, Robillard M S. J. Nucl. Med., 2015, 56(9): 1422.

[54]

Qiao R, Yang C, Gao M. J. Mater. Chem., 2009, 19: 6274.

[55]

Gao Z, Ma T, Zhao E, Docter D, Yang W, Stauber R H, Gao M. Small, 201, 12(5): 556.

[56]

Shin T H, Choi Y, Kim S, Cheon J. Chem. Soc. Rev., 2015, 44(14): 4501.

[57]

Park Y I, Lee K T, Suh Y D, Hyeon T. Chem. Soc. Rev., 2015, 44(6): 1302.

[58]

Izci M, Maksoudian C, Manshian B B, Soenen S J. Chem. Rev., 2021, 3: 1746.

[59]

Huang H, Feng W, Chen Y, Shi J. Nano Today, 2020, 35: 100972.

[60]

Sanita G, Carrese B, Lamberti A. Front. Mol. Biosci., 2020, 7: 587012.

[61]

Qiao R, Yang C, Gao M. J. Mater. Chem., 2009, 19: 6274.

[62]

Hu F Q, Wei L, Zhou Z, Ran Y L, Li Z, Gao M Y. Adv. Mater., 200, 18(19): 2553.

[63]

Xu Y, Wu H, Huang J, Qian W, Martinson D E, Ji B, Li Y, Wang Y A, Yang L, Mao H. Theranostics, 2020, 10(6): 2479.

[64]

Yang X, Hong H, Grailer J J, Rowland I J, Javadi A, Hurley S A, Xiao Y, Yang Y, Zhang Y, Nickles R J, Cai W, Steeber D A, Gong S. Biomaterials, 2011, 32(17): 4151.

[65]

Liu C Y, Qi Y F, Qiao R R, Hou Y, Chan K Y, Li Z Q, Huang J Y, Jing L H, Du J, Gao M Y. Nanoscale, 201, 8: 12579.

[66]

Lu Y, Huang J, Li F, Wang Y, Ding M, Zhang J, Yin H, Zhang R, Ren X. Magn. Reson. Mater. Phy., 2021.

[67]

Gao Z, Hou Y, Zeng J, Chen L, Liu C, Yang W, Gao M. Adv. Mater., 2017, 29(24): 1701095.

[68]

Chen L, Chen J, Qiu S, Wen L, Wu Y, Hou Y, Wang Y, Zeng J, Feng Y, Li Z, Shan H, Gao M. Small, 2018, 14(4): 1702700.

[69]

Liu C, Gao Z, Zeng J, Hou Y, Fang F, Li Y, Qiao R, Shen L, Lei H, Yang W, Gao M. ACS Nano, 2013, 7(8): 7227.

[70]

Steen E J L, Edem P E, Norregaard K, Jorgensen J T, Shalgunov V, Kjaer A, Herth M M. Biomaterials, 2018, 179: 209.

[71]

Lee S B, Kim H L, Jeong H J, Lim S T, Sohn M H, Kim D W. Angew. Chem. Int. Ed., 2013, 52(40): 10549.

[72]

Hou S, Choi J S, Garcia M A, Xing Y, Chen K J, Chen Y M, Jiang Z K, Ro T, Wu L, Stout D B, Tomlinson J S, Wang H, Chen K, Tseng H R, Lin W Y. ACS Nano, 201, 10(1): 1417.

[73]

Keinanen O, Makila E M, Lindgren R, Virtanen H, Liljenback H, Oikonen V, Sarparanta M, Molthoff C, Windhorst A D, Roivainen A, Salonen J J, Airaksinen A J. ACS Omega, 2017, 2(1): 62.

[74]

Fang Y, Judkins J C, Boyd S J, am Ende C W, Rohlfing K, Huang Z, Xie Y, Johnson D S, Fox J M. Tetrahedron, 2019, 75(32): 4307.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/