A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery

Yiqing Ren , Xinlong Liu , Huan Ge , Yuanyuan Guo , Qiushuang Zhang , Miao Xie , Ping Wang , Xinyuan Zhu , Chuan Zhang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 906 -913.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (4) : 906 -913. DOI: 10.1007/s40242-021-1168-5
Article

A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery

Author information +
History +
PDF

Abstract

A combinatorial strategy based on nucleic acid assembly and electrostatic complexation is developed for efficient small interfering ribonucleic acid(siRNA) delivery. In this approach, siRNAs are first loaded into a well-defined nanotube through programmable nucleic acid self-assembly. Compared to small rigid siRNA duplex, the obtained siRNA-bearing nanotube with large architecture is more readily to complex with cationic and ionizable poly(β-amino ester), resulting in the formation of a novel platform for efficient siRNA delivery.

Keywords

Nucleic acid nanogel / Electrostatic compression / siRNA delivery / Self-assembly

Cite this article

Download citation ▾
Yiqing Ren, Xinlong Liu, Huan Ge, Yuanyuan Guo, Qiushuang Zhang, Miao Xie, Ping Wang, Xinyuan Zhu, Chuan Zhang. A Combinatorial Approach Based on Nucleic Acid Assembly and Electrostatic Compression for siRNA Delivery. Chemical Research in Chinese Universities, 2021, 37(4): 906-913 DOI:10.1007/s40242-021-1168-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dykxhoorn D M, Novina C D, Sharp P A. Nat. Rev. Mol. Cell Biol., 2003, 4: 457.

[2]

Jinek M, Doudna J A. Nature, 2009, 457: 405.

[3]

Kaczmarek J C, Kowalski P S, Anderson D G. Genome Med., 2017, 9: 60.

[4]

Springer A D, Dowdy S F. Nucleic Acid Ther., 2018, 28: 109.

[5]

Chen S H, Zhaori G. Eur. J. Clin. Invest., 2011, 41: 221.

[6]

Khvorova A, Watts J K. Nat. Biotechnol., 2017, 35: 238.

[7]

Lorenzer C, Dirin M, Winkler A M, Baumann V, Winkler J. J. Controlled Release, 2015, 203: 1.

[8]

Singh A, Trivedi P, Jain N K. Artificial Cells Nanomedicine and Biotechnology, 2018, 46: 274.

[9]

Chithrani B D, Ghazani A A, Chan W C W. Nano Lett., 200, 6: 662.

[10]

Merkel O M, Beyerle A, Beckmann B M, Zheng M Y, Hartmann R K, Stoger T, Kissel T H. Biomaterials, 2011, 32: 2388.

[11]

Ma D. Nanoscale, 2014, 6: 6415.

[12]

Yin H, Kanasty R L, Eltoukhy A A, Vegas A J, Dorkin J R, Anderson D G. Nat. Rev. Genet., 2014, 15: 541.

[13]

Putnam D. Nat. Mater., 200, 5: 439.

[14]

Ding F, Gao X H, Huang X G, Ge H, Xie M, Qian J W, Song J, Li Y H, Zhu X Y, Zhang C. Biomaterials, 2020, 245: 119976.

[15]

Xia Y, Tian J, Chen X. Biomaterials, 201, 79: 56.

[16]

Ding Y, Jiang Z, Saha K, Kim C S, Kim S T, Landis R F, Rotello V M. Mol. Ther., 2014, 22: 1075.

[17]

Li J, Fan C, Pei H, Shi J, Huang Q. Adv. Mater., 2013, 25: 4386.

[18]

Rahman M A, Wang P, Zhao Z, Wang D, Nannapaneni S, Zhang C, Chen Z, Griffith C C, Hurwitz S J, Chen Z G, Ke Y, Shin D M. Angew. Chem. Int. Ed., 2017, 56: 16023.

[19]

Hu Q Q, Li H, Wang L H, Gu H Z, Fan C H. Chem. Rev., 2019, 119: 6459.

[20]

Ruan W, Zheng M, An Y, Liu Y, Lovejoy D B, Hao M, Zou Y, Lee A, Yang S, Lu Y, Morsch M, Chung R, Shi B. Chem. Commun., 2018, 54: 3609.

[21]

Lee H, Lytton-Jean A K R, Chen Y, Love K T, Park A I, Karagiannis E D, Sehgal A, Querbes W, Zurenko C S, Jayaraman M, Peng C G, Charisse K, Borodovsky A, Manoharan M, Donahoe J S, Truelove J, Nahrendorf M, Langer R, Anderson D G. Nat. Nanotechnol., 2012, 7: 389.

[22]

You Z C, Qian H, Wang C Z, He B F, Yan J W, Mao C D, Wang G S. Biomaterials, 2015, 67: 137.

[23]

Xue H, Ding F, Zhang J, Guo Y Y, Gao X H, Feng J, Zhu X Y, Zhang C. Chem. Commun., 2019, 55: 4222.

[24]

Ding F, Mou Q B, Ma Y, Pan G F, Guo Y Y, Tong G S, Choi C H J, Zhu X Y, Zhang C. Angew. Chem. Int. Ed., 2018, 57: 3064.

[25]

Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, Fan C H. Angew. Chem., Int. Ed., 2014, 53: 7745.

[26]

Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C H. ACS Nano, 2011, 5: 8783.

[27]

Tatiparti K, Sau S, Kashaw S K, Iyer A K. Nanomaterials, 2017, 7: 77.

[28]

Ornelas-Megiatto C T, Wich P R, FréChet J M. J. Am. Chem. Soc., 2012, 134: 1902.

[29]

Boussif O, Lezoualc’h F, Zanta M A, Mergny M D, Scherman D, Demenix B, Behr J P. Proc. Natl. Acad. Sci. USA, 1995, 92: 7297.

[30]

Kretzmann J A, Ho D, Evans C W, Plani-Lam J H C, Garcia-Bloj B, Mohamed A E, O’mara M L, Ford E, Tan D E K, Lister R, Blancafort P, Norret M, Iyer K S. Chemical Science, 2017, 8: 2923.

[31]

Fields R J, Cheng C J, Quijano E, Weller C, Kristofik N, Nha D, Hoimes C, Egan M E, Saltzman W M. J. Controlled Release, 2012, 164: 41.

[32]

Elsabahy M, Wooley K L. Chem. Soc. Rev., 2012, 41: 2545.

[33]

Petros R A, Desimone J M. Nat. Rev. Drug Discovery, 2010, 9: 615.

[34]

Liu X Q, Erikson R L. Proc. Natl. Acad. Sci. USA, 2003, 100: 5789.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/