Influence of SAM Quality on the Organic Semiconductor Thin Film Gas Sensors

Lunan Zhu , Zi Wang , Jie Lu , Xu Zhou , Zhoufang Zeng , Lizhen Huang , Lifeng Chi

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 510 -515.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 510 -515. DOI: 10.1007/s40242-021-1167-6
Article

Influence of SAM Quality on the Organic Semiconductor Thin Film Gas Sensors

Author information +
History +
PDF

Abstract

Gas sensors based on organic semiconductors receive tremendous attentions owing to their advantages on high selectivity and room temperature operation. However, until now, most organic semiconductor based sensors still suffered from problems, such as low sensitivity, slow response/recovery speed and poor stability. In addition, a clear correlation between the sensing performance and the film property is still absent. Herein, we report the investigation on sensing performance of a series of organic films with various morphologies. By simply adjusting the quality of self-assembled monolayer(SAM) on the silicon wafer surface, we obtain organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) films with varied morphologies and different charge transport abilities. The film with a small grain size and a continuous morphology presents the highest sensing performance to NO2, with a sensitivity up to 730%/ppm(ppm=parts per million, volume ratio). We thus reveal that the high sensitivity of the organic film is evident related with the charge transport ability and initial conductivity of the films, as well as the morphologies of both modification layer and the active films.

Keywords

Self-assembled monolayer / Gas sensor / Organic semiconductor / Thin film growth

Cite this article

Download citation ▾
Lunan Zhu, Zi Wang, Jie Lu, Xu Zhou, Zhoufang Zeng, Lizhen Huang, Lifeng Chi. Influence of SAM Quality on the Organic Semiconductor Thin Film Gas Sensors. Chemical Research in Chinese Universities, 2022, 38(2): 510-515 DOI:10.1007/s40242-021-1167-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sirringhaus H. Adv. Mater., 2014, 26: 1319.

[2]

Sirringhaus H, Tessler N, Friend R H. Science, 1998, 280: 1741.

[3]

Baude P F, Ender D A, Haase M A, Kelley T W, Muyres D V, Theiss S D. Appl. Phys. Lett., 2003, 82: 3964.

[4]

Steudel S, Myny K, Arkhipov V, Deibel C, de Vusser S, Genoe J, Heremans P. Nat. Mater., 2005, 4: 597.

[5]

Zhang C, Chen P, Hu W. Chem. Soc. Rev., 2015, 44: 2087.

[6]

Someya T, Dodabalapur A, Huang J, See K C, Katz H E. Adv. Mater., 2010, 22: 3799.

[7]

Lin P, Yan F. Adv. Mater., 2012, 24: 34.

[8]

Torsi L, Magliulo M, Manoli K, Palazzo G. Chem. Soc. Rev., 2013, 42: 8612.

[9]

Khan H U, Jang J, Kim J J, Knoll W. J. Am. Chem. Soc., 2011, 133: 2170.

[10]

Li H, Shi W, Song J, Jang H J, Dailey J, Yu J, Katz H E. Chem. Rev., 2019, 119: 3.

[11]

Beaujuge P M, Frechet J M. J. Am. Chem. Soc., 2011, 133: 20009.

[12]

Garg K, Singh A, Majumder C, Nayak S K, Aswal D K, Gupta S K, Chattopadhyay S. Org. Electron., 2013, 14: 1189.

[13]

Di C A, Liu Y Q, Yu G, Zhu D B. Acc. Chem. Res., 2009, 42: 1573.

[14]

Ji S, Wang H, Wang T, Yan D. Adv. Mater., 2013, 25: 1755.

[15]

Wang X, Ji S, Wang H, Yan D. Org. Electron., 2011, 12: 2230.

[16]

Shaymurat T, Tang Q, Tong Y, Dong L, Liu Y. Adv. Mater., 2013, 25: 2269.

[17]

Huang W, Besar K, LeCover R, Rule A M, Breysse P N, Katz H E. J. Am. Chem. Soc., 2012, 134: 14650.

[18]

Lu J, Liu D, Zhou J, Chu Y, Chen Y, Wu X, Huang J. Adv. Funct. Mater., 2017, 27: 1700018.

[19]

Wu S, Wang G, Xue Z, Ge F, Zhang G, Lu H, Qiu L. ACS Appl. Mater. Interfaces, 2017, 9: 14974.

[20]

Huang W, Zhuang X, Melkonyan F S, Wang B, Zeng L, Wang G, Han S, Bedzyk M J, Yu J, Marks T J, Facchetti A. Adv. Mater., 2017, 29: 1701706.

[21]

Wang Z, Huang L, Zhu X, Zhou X, Chi L. Adv. Mater., 2017, 29: 1703192.

[22]

Jiang L, Dong H, Meng Q, Li H, He M, Wei Z, He Y, Hu W. Adv. Mater., 2011, 23: 2059.

[23]

Minari T, Kano M, Miyadera T, Wang S-D, Aoyagi Y, Seto M, Nemoto T, Isoda S, Tsukagoshi K. Appl. Phys. Lett., 2008, 92: 173301.

[24]

Virkar A, Mannsfeld S, Oh J H, Toney M F, Tan Y H, Liu G Y, Scott J C, Miller R, Bao Z. Adv. Funct. Mater., 2009, 19: 1962.

[25]

Ito Y, Virkar A A, Mannsfeld S, Oh J H, Toney M, Locklin J, Bao Z A. J. Am. Chem. Soc., 2009, 131: 9396.

[26]

Ong B S, Wu Y L, Liu P, Gardner S. J. Am. Chem. Soc., 2004, 126: 3378.

[27]

Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S, Iwasa Y. Nat. Mater., 2004, 3: 317.

[28]

Giri G, Verploegen E, Mannsfeld S C, Atahan-Evrenk S, Kim D H, Lee S Y, Becerril H A, Aspuru-Guzik A, Toney M F, Bao Z. Nature, 2011, 480: 504.

[29]

Anthony J E, Brooks J S, Eaton D L, Parkin S R. J. Am. Chem. Soc., 2001, 123: 9482.

[30]

Zhu X F, Zhang X D, Huang L Z, Wang Z, Chi L F. Chem. Res. Chinese Universities, 2018, 34(1): 151.

[31]

Lee H S, Kim D H, Cho J H, Hwang M, Jang Y, Cho K. J. Am. Chem. Soc., 2008, 130: 10556.

[32]

Kim D H, Lee H S, Yang H, Yang L, Cho K. Adv. Funct. Mater., 2008, 18: 1363.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/