Optimization of Electrical Conductivity of SA-graphene Nanocomposites Using Response Surface Methodology

Hakan Şahal , Gülben Torğut , Erdal Canpolat

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 596 -602.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 596 -602. DOI: 10.1007/s40242-021-1154-y
Article

Optimization of Electrical Conductivity of SA-graphene Nanocomposites Using Response Surface Methodology

Author information +
History +
PDF

Abstract

Synthesis and characterization of 4-{(E)-[(5-bromo-2-hydroxyphenyl)methylidene]amino}-N-carbamimidoylbenzene-1-sulfonamide(SA) and its composites with graphene(SA-GF) were performed. Compound SA and SA-GF were characterized by FTIR and 1H NMR. The GF dispersion in the composites was analyzed by means of scanning electron microscopy(SEM) for morphology. Thermal properties of SA and nanocomposites were investigated using differential thermal analysis(DTA) and thermogravimetric analysis(TGA). The optimum electrical conductivity of the new sulfonamide-based Schiff base was determined to be 1.78×10−5 S/cm at a frequency of 9923 Hz, an applied voltage of −19 V, a mass fraction of 9.38% for graphene loading using a central composite design in the response surface methodology. The significance of the selected parameters(frequency, voltage and GF amount) in the model was determined by the analysis of variance(ANOVA). The results showed that frequency and graphene loading represent important model terms and have considerable effects on the conductivity of SA.

Keywords

Schiff base / Sulfonamide / Graphene / Conductivity / Nanocomposite

Cite this article

Download citation ▾
Hakan Şahal, Gülben Torğut, Erdal Canpolat. Optimization of Electrical Conductivity of SA-graphene Nanocomposites Using Response Surface Methodology. Chemical Research in Chinese Universities, 2022, 38(2): 596-602 DOI:10.1007/s40242-021-1154-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mohammed I A, Sankar G, Khairuddean M, Mohamad A B. Molecules, 2010, 15: 3260.

[2]

Li Y, Yang Z S, Zhang H, Cao B J, Wang F D. Bioorg. Med. Chem., 2003, 11: 4363.

[3]

O’Donnell M J. Acc. Chem. Res., 2004, 37: 506.

[4]

Rana S, Mittal S K, Singh N, Singh J, Banks C E. Actuators B: Chem., 201, 239: 17.

[5]

Yuan G, Tian Y, Liu J, Tu H, Liao J, Yang J, Yang Y, Wang D, Liu N. Chem. Eng., 2017, 326: 691.

[6]

Nematidil N, Sadeghi M, Nezami S, Sadeghi H. Carbohydr. Polym., 2019, 222: 114971.

[7]

Naz A, Arun S, Narvi S S, Alam M S, Singh A, Bhartiya P, Dutta P K. Int. J. Biol. Macromol., 2018, 110: 215.

[8]

Ren G, Clancy C, Tamer T M, Schaller B, Walker G M, Collins M N. Int. J. Biol. Macromol., 2019, 141: 936.

[9]

Anush S M, Vishalakshi B, Kalluraya B, Manju N. Int. J. Biol. Macromol., 2018, 119: 446.

[10]

Gogotsi E. Nanomaterials Handbook, 2006, London: CRC Press.

[11]

Geim A K. Science, 2009, 324: 1530.

[12]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.

[13]

Chen J, Jang C, Xiao S, Ishigami M, Fuhre M S. Nat. Nanotechnol., 2008, 3: 206.

[14]

Li C, Thostenson E T, Chou T. Compos. Sci. Technol., 2008, 68: 1227.

[15]

Ijima S. Nature, 1991, 354: 56.

[16]

Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8: 3498.

[17]

Harima Y, Setodoi S, Imae I, Komaguchi K, Ooyama Y, Ohshita J, Mizota H, Yano J. Electrochim. Acta, 2011, 56: 5363.

[18]

Lee C, Wei X, Kysar J W, Home J. Science, 2008, 321: 385.

[19]

Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183.

[20]

Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8: 902.

[21]

Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N. Appl. Phys. Lett., 2008, 92: 151911.

[22]

Du X, Skachko I, Barker A, Andrei E Y. Nat. Nanotechnol., 2008, 3: 491.

[23]

Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Home J, Kim P, Stormer H L. Solid State Commun., 2008, 146: 351.

[24]

Nair R R, Blake P, Geim A N. Science, 2008, 320: 1308.

[25]

Zhu Y, Cai W, Piner R D, Velamakanni A, Ruoff R S. Appl. Phys. Lett., 2009, 95: 103104.

[26]

Raj M A, John S A. Anal. Chim. Acta, 2013, 771: 14.

[27]

Wang D, Yan W, Vijapur S H, Botte G G. Electrochim. Acta, 2013, 89: 732.

[28]

Wang R, Wu Z, Chen C, Qin Z, Zhu H, Wang G, Wu C, Dong W, Fan W, Wang J. Chem. Commun., 2013, 49: 8250.

[29]

Metin Ö, Ho S F, Alp C, Can H, Mankin M N, Galtekin M S, Chi M, Sun S. Nano Res., 2013, 6: 10.

[30]

Hsieh C, Liu Y, Roy A K. Electrochim. Acta, 2012, 64: 205.

[31]

Chang H, Chang C, Tsai T, Liao C. Carbon, 2012, 50: 2331.

[32]

Schwierz F. Nat. Nanotechnol., 2010, 5: 487.

[33]

Li X B, Yang S W, Sun J, He P, Pu X P, Ding G Q. Synth. Met., 2014, 194: 52.

[34]

Wang Y, Huang Y, Wang Q F, Zeng M. Powder Technol., 2013, 249: 304.

[35]

Zhang H B, Zheng W G, Yan Q, Yang Y, Wang J W, Lu Z H, Ji G Y, Yu Z Z. Polymer, 2010, 51: 1191.

[36]

Chen B H, Muller M B, Gilmore K J, Wallace G G, Dan L. Adv. Mater., 2008, 20: 3557.

[37]

Talib N A A, Salam F, Yusof N A, Ahmad S A A, Sulaiman Y. J. Electroanal. Chem., 2017, 787: 1.

[38]

Ghasemi F A, Ghasemi I, Menbari S, Ayaz M, Ashori A. Polym.Test., 201, 53: 283.

[39]

Zare Y, Garmabi H, Sharif F. J. Appl. Polym. Sci., 2011, 122: 3188e3200.

[40]

Chieng B W, Ibrahim N A, Wan Yunus W M Z. Polym. Plast. Technol. Eng., 2012, 51: 791.

[41]

Bejan A E, Dıaconu C V, Damaceanu M D. J. Electron. Mater., 2021, 50: 1358.

[42]

Sonker E, Tiwari R, Kumar K, Krishnamoorthi S. Appl. Sci., 2020, 2: 1123.

[43]

Hafeez A, Akhter Z, Gallagher J F, Khan N A, Gul A, Shah F U. Polymers, 2019, 11: 1498.

[44]

Ebrahimi H, Hadi J S, Al-Ansari H S. J. Mol. Struct., 2013, 1039: 37.

[45]

Kratky M, Vinsova J, Volkova M, Buchta V, Trejtnar F, Stolarikova J. Eur. J. Med. Chem., 2012, 50: 433.

[46]

Lal K, Shukla R K. J. Indian Chem., 1981, 58: 115.

[47]

Hodlur R M, Rabinal M K. Compos. Scı. Technol., 2014, 90: 160.

[48]

Cai D, Jie J, Yusoh K, Rafiq R, Song M. Compos. Sci. Technol., 2012, 72: 702.

[49]

Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. J. Phys. Chem. C, 2008, 112: 8192.

[50]

Heidari M, Bahrami H, Ranjbar-Mohammadi M. Mater. Sci. Eng. C, 2017, 78: 218.

[51]

Sayyar S, Murray E, Thompson B C, Gambhir S, Officer D L, Wallace G G. Carbon, 2013, 52: 296.

[52]

Torğut G. Polymer Testing, 2019, 76: 312.

[53]

Iranmanesh S, Mehrali M, Sadeghinezhadb E, Ang B C, Ong H C, Esmaeilzadeh A. Int. Commun. Heat. Mass., 201, 79: 74.

[54]

Bezerra M A, Santelli R E, Oliveira E P, Villar L S, Escaleira L A. Talanta, 2008, 76: 965.

[55]

Biryan F, Demirelli K. J. Mol. Struct., 2019, 1186: 187e203.

[56]

Biryan F, Demirelli K. Adv. Polym. Technol., 2017, 37: 1.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/