Highly Stable CsPbBr3 Nanocrystal Phosphors by Surface Passivation and Encapsulation

Zheliang Shang , Weinan Xue , Wei Wang , Yan Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 588 -595.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 588 -595. DOI: 10.1007/s40242-021-1153-z
Article

Highly Stable CsPbBr3 Nanocrystal Phosphors by Surface Passivation and Encapsulation

Author information +
History +
PDF

Abstract

The colloidal all-inorganic CsPbX3(X=I, Br, Cl) perovskite nanocrystals(NCs) with unique optical properties have attracted considerable attention in the field of semiconductor nanocrystals, but their application is hindered by stability issues caused by surface defects and environmental factors. Usually with inert layer encapsulation, the stability of CsPbX3 NCs can be significantly enhanced. However, due to the loss of highly dynamic oleic acid/oleylamine ligands, it is usually accompanied by a decrease in the photoluminescence quantum yield(PLQY). Herein, we report a facile method for preparing CsPbBr3 NCs based green phosphors with high stability and bright emission. With modification of colloidal CsPbBr3 NCs by di-dodecyldimethylammonium bromide and sequent encapsulation in the as-synthesized mesoporous MOF-5, the green emitting phosphors with enhanced stability and a PLQY of 77% were obtained. The phosphors exhibit enhanced resistance against ambient oxygen, UV light, heat treatment and water. These excellent properties show the potential value of our prepared NCs as stable phosphors in light-emitting devices.

Keywords

Perovskite nanocrystal / Phosphor / Surface passivation / Encapsulation / Mesoporous MOF-5

Cite this article

Download citation ▾
Zheliang Shang, Weinan Xue, Wei Wang, Yan Li. Highly Stable CsPbBr3 Nanocrystal Phosphors by Surface Passivation and Encapsulation. Chemical Research in Chinese Universities, 2022, 38(2): 588-595 DOI:10.1007/s40242-021-1153-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Protesescu L, Yakunin S, Bodnarchuk M, Krieg F, Caputo R, Hendon C, Yang R, Walsh A, Kovalenko M. Nano Lett., 2015, 15: 3692.

[2]

Huang S, Wang B, Zhang Q, Li Z, Shan A, Li L. Adv. Opt. Mater., 2018, 6: 1701106.

[3]

Li J, Xu L, Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B, Zeng H. Adv. Mater., 2017, 29: 1603885.

[4]

Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V L, Wang S, Zhang Y, Yu W. J. Phys. Chem. Lett., 2019, 10: 1750.

[5]

Zhang F, Huang S, Wang P, Chen X, Zhao S, Dong Y, Zhong H. Chem. Mater., 2017, 29: 3793.

[6]

Yang M, Cao Q, Zhong P, Li X, Zhang Q. J. Mater. Chem. C, 2019, 7: 757.

[7]

Schmidt L, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez G, Bolink H, Galian E, Perez-Prieto J. J. Am. Chem. Soc., 2014, 136: 850.

[8]

Wang Y, Li X, Sreejith S, Cao F, Wang Z, Stuparu M, Zeng H, Sun H. Adv. Mater., 201, 28: 10637.

[9]

Li X, Cao F, Yu D, Chen J, Sun Z, Shen Y, Zhu Y, Wang L, Wei Y, Wu Y, Zeng H. Small, 2017, 13: 1603996.

[10]

Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J. Phys.Chem. Lett., 201, 7: 167.

[11]

Huang H, Chen B, Wang Z, Hung T, Susha A, Zhong H, Rogach A. Chem. Sci., 201, 7: 5699.

[12]

Lin C, Jiang D, Kuo C, Cho C, Tsai Y, Satoh T, Su C. ACS Appl. Mater. Interfaces, 2018, 10: 2210.

[13]

de Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J, van Driessche I, Kovalenko M, Hens Z. ACS Nano, 201, 10: 2071.

[14]

Pan J, Shang Y, Yin J, de Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A, Hedhili M, Emwas A, Mohammed O, Ning Z, Bakr O. J. Am. Chem. Soc., 2018, 140: 562.

[15]

Stoumpos C, Malliakas C, Kanatzidis M. Inorg. Chem., 2013, 52: 9019.

[16]

Wang C, Chesman A, Jasieniak J. Chem. Commun., 201, 53: 232.

[17]

Smock S, Williams T, Brutchey R. Angew. Chem. Int. Ed., 2018, 130: 11885.

[18]

Li Q, Li H, Shen H, Wang F, Zhao F, Li F, Zhang X, Li D, Jin X, Sun W. ACS Photonics, 2017, 4: 2504.

[19]

Wu Y, Wei C, Li X, Li Y, Qiu S, Shen W, Cai B, Sun Z, Yang D, Deng Z, Zeng H. ACS Energy Lett., 2018, 3: 2030.

[20]

Imran M, Ramade J, Stasio F, Franco M, Buha J, Aert S, Goldoni L, Lauciello S, Prato M, Infante I, Bals S, Manna L. Chem. Mater., 2020, 32: 10641.

[21]

Li Y, Wang X, Xue W, Wang W, Zhu W, Zhao L. Nano Res., 2019, 12: 785.

[22]

Mosconi E, Azpiroz J, de Angelis F. Chem. Mater., 2015, 27: 4885.

[23]

Wang H, Lin S, Tang A, Singh B, Tong H, Chen C, Lee Y, Tsai T, Liu R. Angew. Chem., Int. Ed., 201, 55: 7924.

[24]

Dirin D, Protesescu L, Trummer D, Kochetygov I, Yakunin S, Krumeich F, Stadie N, Kovalenko M. Nano Lett., 201, 16: 5866.

[25]

Zhang D, Xu Y, Liu Q, Xia Z. Inorg. Chem., 2018, 57: 4613.

[26]

Rambabu D, Bhattacharyya S, Singh T, Chakravarthy M, Maji T. Inorg. Chem., 2020, 59: 1436.

[27]

Wong Y, de Andrew Ng J, Tan Z. Adv. Mater., 2018, 30: 1800774.

[28]

Zhang X, Wang H, Tang A, Lin S, Tong H, Chen C, Lee Y, Tsai T, Liu R. Chem. Mater., 201, 28: 8493.

[29]

Huang Y, Li F, Qiu L, Lin F, Lai Z, Wang S, Lin L, Zhu Y, Wang Y, Jiang Y, Chen X. ACS Appl. Mater. Interfaces, 2019, 11: 26384.

[30]

Jiang G, Guhrenz C, Kirch A, Sonntag L, Bauer C, Fan X, Wang J. ACS Nano, 2019, 13(9): 10386.

[31]

Chen Y, Zhou Y, Zhao Q, Zhang J, Ma J, Xuan T, Guo S, Yong Z, Wang J, Kuroiwa Y. ACS Appl. Mater. Interfaces, 2018, 10: 15905.

[32]

Zhang F, Shi Z, Li S, Ma Z, Li Y, Wang L, Wu D, Tian Y, Du G, Li X. ACS Appl. Mater. Interfaces, 2019, 11: 28013.

[33]

Zhou Y, Pan A, Shi C, Ma X, Jia M, Huang H, Ren D, He L. Appl. Surf. Sci., 2020, 515: 146004.

[34]

Wang B, Zhang C, Zheng W, Zhang Q, Bao Z, Kong L, Li L. Chem. Mater., 2020, 32: 308.

[35]

Li Z, Kong L, Huang S, Li L. Angew. Chem. Int. Ed., 2017, 56: 8134.

[36]

Li Z, Hofman E, Li J, Davis A, Tung C, Wu L, Zheng W. Adv. Funct. Mater., 2018, 28: 1704288.

[37]

Zhang Q, Wang B, Zheng W, Kong L, Wan Q, Zhang C, Li Z, Cao X, Liu M, Li L. Nat. Commun., 2020, 11: 31.

[38]

Guhrenz C, Benad A, Ziegler C, Haubold D, Gaponik N, Eychmüller A. Chem. Mater., 201, 28: 9033.

[39]

Li Z, Kong L, Huang S, Li L. Angew. Chem. Int. Ed., 2017, 56: 8134.

[40]

Huang S, Li Z, Kong L, Zhu N, Shan A, Li L. J. Am. Chem. Soc., 201, 138: 5749.

[41]

Ren J, Li T, Zhou X, Dong X, Shorokhov A, Semenov M, Wang Y, Krevchik V. Chem. Eng. J., 2019, 358(8): 30.

[42]

Zheng C, Bi C, Huang F, Binks D, Tian T. ACS Appl. Mater. Interfaces, 2019, 11: 25410.

[43]

Gonzalez-Pedro V, Veldhuis S, Begum R, Bañuls M, Bruno A, Mathews N, Mhaisalkar S, Maquieira ACS Energy Lett., 2018, 3: 1409.

[44]

Liu Y, Li F, Liu Q, Xia Z. Chem. Mater., 2018, 30: 6922.

[45]

Vossier A, Al Alam E, Dollet A, Amara M. IEEE J. Photovolt., 2015, 5: 1805.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/