Partial P-Type Metal Ions Doping Induced Variation of Both Crystal Structure and Oxygen Vacancy Within Cu/SnO2 Metastable Solid Solution Nanofibers for Highly Sensitive C2H2 Sensor

Ruifang Wang , Xi Yu , Zhenyu Li , Jingyu Chen , Tingting Jiang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 584 -588.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 584 -588. DOI: 10.1007/s40242-021-1144-0
Article

Partial P-Type Metal Ions Doping Induced Variation of Both Crystal Structure and Oxygen Vacancy Within Cu/SnO2 Metastable Solid Solution Nanofibers for Highly Sensitive C2H2 Sensor

Author information +
History +
PDF

Abstract

Partial P-type metal ions doping(PPMID) is an alternative method to further enhance the gas sensing performance of N-type metal oxides(NMOs) in contrast to that of P-N metal oxides heterojunctions, but the influences of the introduction of PPMID on the grain size and oxygen vacancies of NMOs have been rarely investigated. Herein, a simple and effective route has been demonstrated to address this problem with Cu2+-doped SnO2 metastable solid solution nanofibers(CSMSSNs) as model and C2H2 as target molecule by combining electrospinning and calcination technique. It seems that the introduction of PPMID can also affect crystal structure and oxygen vacancies of NMOs, proven by combining X-ray diffraction(XRD) and X-ray photoelectron spectra(XPS). Thus, PPD, crystal structure and oxygen vacancies have been combined to clarify the enhanced sensing performance of Cu-doped SnO2 metastable solid solution nanofibers angainst C2H2.

Keywords

P-Type doping / P-N heterojunction / Electrospinning / Metastable solid solution nanofiber / C2H2 sensor

Cite this article

Download citation ▾
Ruifang Wang, Xi Yu, Zhenyu Li, Jingyu Chen, Tingting Jiang. Partial P-Type Metal Ions Doping Induced Variation of Both Crystal Structure and Oxygen Vacancy Within Cu/SnO2 Metastable Solid Solution Nanofibers for Highly Sensitive C2H2 Sensor. Chemical Research in Chinese Universities, 2021, 37(3): 584-588 DOI:10.1007/s40242-021-1144-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan H Y, Aljneibi S, Yuan J R, Wang Y X, Liu H, Fang J. Adv. Mater., 2019, 31: 201807161.

[2]

Li Z J, Li H, Wu Z L, Wang M K, Luo J T, Torun H D. Mater. Horizons, 2019, 6: 470.

[3]

Ji H C, Zeng W, Li Y Q. Nanoscale, 2019, 11: 22664.

[4]

Chen X X, Shen Y B, Zhou P F, Zhao S K, Zhong X X, Li T T. Sens. & Actuators B, 2019, 280: 151.

[5]

Li G J, Cheng Z X, Xiang Q, Yan L M, Wang X H, Xu J Q. Sens. & Actuators B, 2019, 283: 590.

[6]

Walker J M, Akbar S A, Morris PA. Sens. & Actuators B, 2019, 286: 624.

[7]

Yang X L, Zhang S F, Yu Q, Zhao L P, Sun P, Wang T S. Sens. & Actuators B, 2019, 281: 415.

[8]

Zeng W, Li Y Q, Miao B, Wang Z C. Sens. & Actuators B, 2014, 191: 1.

[9]

Li T M, Zeng W, Wang Z C. Sens. & Actuators B, 2015, 221: 1570.

[10]

Guo W W, Fu M, Zhai C Z, Wang Z C. Ceram. Int., 2014, 40: 2295.

[11]

Wang J, Zeng W, Wang Z C. Ceram. Int., 201, 42: 4567.

[12]

Zeng W, Zhang H, Wang Z C. Appl. Surf. Sci., 2015, 347: 73.

[13]

Wang J, Li X Z, Wei B, Sun R, Yu W, Hoh H Y, Xu H M, Li J, Ge X B, Su C L, Wang Z C. Adv. Funct. Mater., 2020, 30: 1908708.

[14]

Wang Z J, Li Z Y, Jiang T T, Xu X R, Wang C. ACS Appl. Mater. Interfaces, 2013, 5: 2013.

[15]

Zheng W, Lu X F, Wang W, Li Z Y, Zhang H N, Wang Y, Wang C. Sens. & Actuators B, 2009, 142: 61.

[16]

Arafat M M, Dinan B, Akbar S A, Haseeb A. Sensors, 2012, 12: 7207.

[17]

Ding B, Wang M R, Wang X F, Yu J Y, Sun G. Mater. Today, 2010, 13: 16.

[18]

Ding B, Wang M R, Yu J Y, Sun G. Sensors, 2009, 9: 1609.

[19]

Yang D J, Kamienchick I, Youn D Y, Rothschild A, Kim I D. Adv. Funct. Mater., 2010, 20: 4258.

[20]

Kim J H, Lee J H, Kim J Y, Mirzaei A, Kim H W, Kim S S. J. Hazard. Mater., 2019, 376: 68.

[21]

Kim J H, Mirzaei A, Zheng Y F, Lee J H, Kim J Y, Kim H W. Sens. & Actuators B, 2019, 281: 453.

[22]

Sun Y J, Wang Z P, Wang W D, Li G, Li P W, Lian K. Mater. Res. Bull, 2019, 109: 255.

[23]

Wang Q, Bai JL, Huang BY, Hu Q, Cheng X, Li JP. J. Alloys. Compd., 2019, 791: 1025.

[24]

Li Z Y, Yang Q B, Wu Y P, He Y, Chen J Y, Wang J F. Int. J. Hydrog. Energy, 2019, 44: 8659.

[25]

Wang Z J, Li Z Y, Sun J H, Zhang H N, Wang W, Zheng W, Wang C. J. Phys. Chem. C, 2010, 114: 6100.

[26]

Xu X R, Sun J H, Zhang H N, Wang Z J, Dong B, Jiang T T, Li Z Y, Wang C. Sens. & Actuators B, 2011, 160: 858.

[27]

Patterson A. Phys. Rev., 1939, 56: 978.

[28]

Šeruga M, Metikoš-Huković M, Valla T, Milun M, Hoffschultz H, Wandelt K. J. Electroanal Chem., 199, 407: 83.

[29]

Jiang Z Q, Jiang T T, Wang J F, Wang Z J, Xu X R, Wang Z X, Zhao R, Li Z Y, Wang C. J. Colloid. Interface Sci., 2015, 437: 252.

[30]

Wang W, Li Z Y, Zheng W, Huang H M, Wang C. Sens. & Actuators B, 2010, 143: 754.

[31]

Frank M E, Koplin T J, Simon U. Small, 200, 2: 36.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/