Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity

Shaoju Jian , Zhiwei Tian , Kaiyin Zhang , Gaigai Duan , Weisen Yang , Shaohua Jiang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 565 -570.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 565 -570. DOI: 10.1007/s40242-021-1114-6
Article

Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity

Author information +
History +
PDF

Abstract

Ce/ZnO decorated carbon nanofibers(CNFs) heteroarchitectures(Ce/ZnO/CNFs) have been synthesized using electrospinning technique followed hydrothermal method, which have a high visible light photocatalytic activity. The samples were characterized by means of SEM, FTIR and XRD. The photocatalytic performance of Ce/ZnO/CNFs was tested with the methylene blue in the presence of visible light irradiation. In this work, we have analyzed the effects of Ce doping amount, initial methylene blue(MB) concentration and dosage of Ce/ZnO/CNFs on photocatalytic efficiency of the composite. The results showed that the photocatalyst containing 1.0% Ce in molarity(CZC1) obtained by autoclaving at 150 °C has the best photocatalytic degradation of MB than other as-synthesized samples. Ce/ZnO/CNFs catalysts exhibit a good stability and reusability, which would be an economical and environmentally friendly photocatalyst for various practical applications.

Keywords

Photocatalysis / Electrospinning / Visible light / Degradation / Carbon nanofiber

Cite this article

Download citation ▾
Shaoju Jian, Zhiwei Tian, Kaiyin Zhang, Gaigai Duan, Weisen Yang, Shaohua Jiang. Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity. Chemical Research in Chinese Universities, 2021, 37(3): 565-570 DOI:10.1007/s40242-021-1114-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xie Y, Yan B, Xu H, Chen J, Liu Q, Deng Y, Zeng H. ACS Appl. Mater. Inter., 2014, 6: 8845.

[2]

Qian H, Wang J, Yan L. J. Bioresour. Bioprod., 2020, 5: 204.

[3]

Liang G, Zhang Y, Sun Y, Xu H, Shu L, Xu F, Zhang W. J. For. Eng., 2019, 4: 81.

[4]

Subash B, Krishnakumar B, Velmurugan R, Swaminathan M, Shanthi M. Catal. Sci. Technol., 2012, 2: 2319.

[5]

Ouyang W, Liu S, Yao K, Zhao L, Cao L, Jiang S, Hou H. Compos. Commun., 2018, 9: 76.

[6]

Xue B, Fang L, Liang C, Li X, Lai C, Yong Q, Huang C. J. For. Eng., 2019, 4: 85.

[7]

Zhao W, Ding H, Zhu J, Liu X, Xu Q, Yin D. J. Bioresour. Bioprod., 2020, 5: 291.

[8]

Shao J, Ni Y, Yan L. J. Bioresour. Bioprod., 2021, 6: 39.

[9]

Zhang Y, Wei L, Lu L, Gan L, Pan M. J. For. Eng., 2020, 5: 72.

[10]

Fanourakis S K, Peña-Bahamonde J, Bandara P C, Rodrigues D F. npj Clean Water, 2020, 3: 1.

[11]

Zhang H, Jiang J, Li J, Li Y, Zhou L, Gao H, Liu S. J. For. Eng., 2020, 5: 76.

[12]

Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Adv. Mater., 2012, 24: 229.

[13]

Lu L, Dong M, Yang T, Gu Y, Han S. J. For. Eng., 2020, 5: 69.

[14]

Narayanan N, Deepak N K. Solid State Sci., 2018, 78: 144.

[15]

Labhane P K, Sonawane G H, Sonawane S H. Green Process Synth., 2018, 7: 360.

[16]

Wang L, Ji Z, Lin J, Li P. Mater. Sci. Semicond. Process, 2017, 71: 401.

[17]

Li X, Li J, Li S, Fang X, Fang F, Chu X, Wang X, Hu J. Chem. Res. Chinese Universities, 2013, 29(6): 1032.

[18]

Hezam A, Namratha K, Drmosh Q A, Yamani Z H, Byrappa K. Ceram. Int., 2017, 43: 5292.

[19]

Saravanan R, Shankar H, Prakash T, Narayanan V, Stephen A. Mater. Chem. Phys., 2011, 125: 277.

[20]

Guo W, Liu H. Chem. Res. Chinese Universities, 2017, 33(1): 129.

[21]

Dugosz O., Banach M., J. Nanostruct. Chem., 2021, https://doi.org/10.1007/s40097-021-00387-9

[22]

Guan R, Zhai H, Sun D, Zhang J, Wang Y, Li J. Chem. Res. Chinese Universities, 2019, 35(2): 271.

[23]

Alam U, Khan A, Raza W, Khan A, Bahnemann D, Muneer M. Cata. Today, 2017, 284: 169.

[24]

Shukla S, Sharma D K. Mater. Today: Proc., 2021, 34: 793.

[25]

Yayapao O, Thongtem S, Phuruangrat A, Thongtem T. Ceram. Int., 2013, 39: S563.

[26]

Gonalves N P F, Varga Z, Nicol E, Calza P, Bouchonnet S. Catalysts, 2021, 11: 240.

[27]

Caregnato P., Jiménez K. R. E., Villabrille P. I., Cata. Today, 2020, https://doi.org/10.1016/j.cattod.2020.07.031

[28]

Duan G, Fang H, Huang C, Jiang S, Hou H. J. Mater. Sci., 2018, 53: 15096.

[29]

Wang Y, Li W, Chao S, Li Y, Li X, He D, Wang C. Chem. Res. Chinese Universities, 2020, 36(6): 1292.

[30]

Jiang S, Cheong JY, Nam JS, Kim I-D, Agarwal S, Greiner A. ACS Appl. Mater. Inter., 2020, 12: 19006.

[31]

Zhou S, Zhou G, Jiang S, Fan P, Hou H. Mater. Lett., 2017, 200: 97.

[32]

Zhang L, Austin D, Merkulov V I, Meleshko A V, Klein K L, Guillorn M A, Lowndes D H, Simpson M L. Appl. Phys. Lett., 2004, 84: 3972.

[33]

Unalan H E, Wei D, Suzuki K, Dalai S, Hiralal P, Matsumoto H, Imaizumi S, Minagawa M, Tanioka A, Flewitt A J. Appl. Phys. Lett., 2008, 93: 737.

[34]

Liu J, Li J, Ashok, Sedhain, Lin J, Jiang H. J. Phys. Chem. C, 2008, 112: 17127.

[35]

Pant B, Barakat N A M, Pant H R, Park M, Saud P S, Kim J W, Kim H Y. J. Colloid Interface. Sci., 2014, 434: 159.

[36]

Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y. ACS Appl. Mater. Inter., 2011, 3: 590.

[37]

Xu W, Feng Y, Ding Y, Jiang S, Fang H, Hou H. Mater. Lett., 2015, 161: 431.

[38]

Pant B, Park M, Kim H Y, Park S J. Synthetic Met., 201, 220: 533.

[39]

Lamba R, Umar A, Mehta S K, Kansal S K. J. Alloy. Compd., 2015, 620: 67.

[40]

Khan M M, Gracia F, Qin J, Gupta V, Arumainathan S. Sci. Rep., 201, 66: 319.

[41]

Kannadasan N, Shanmugam N, Cholan S, Sathishkumar K, Viruthagiri G, Poonguzhali R. Mater. Charact., 2014, 97: 37.

[42]

Bechambi O, Jlaiel L, Najjar W, Sayadi S. Mater. Chem. Phys., 201, 173: 95.

[43]

Saad A H A, Azzam A M, El-Wakeel S T, Mostafa B B, Abd El-latif M B. Environ. Nanotechnol. Monit. Manage., 2018, 9: 67.

[44]

Bechambi O, Jlaiel L, Najjar W, Sayadi S. Mater. Chem. Phys., 201, 173: 95.

[45]

Saravanan R, Karthikeyan N, Govindan S, Narayanan V, Stephen A. Adv. Mater. Res., 2012, 584: 381.

[46]

Piña-Pérez Y, Tzompantzi-Morales F, Pérez-Hernández R, Arroyo-Murillo R, Acevedo-Peña P, Gómez-Romero R. Fuel, 2017, 198: 11.

[47]

Krishnakumar B, Subash B, Swaminathan M. Sep. Purif. Technol., 2012, 85: 35.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/