Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection
Jun Wang , Wanlin Fu , Wanlin Xu , Min Wu , Yueming Sun , Yunqian Dai
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 366 -378.
Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection
Ultrathin oxide nanofibers are widely used in an array of catalytic applications toward energy conversion and environmental protection. Remarkable progress has been made with regard to the development of engineering oxide nanofibers into unique structures to suit or enable various functions. We aim to provide a comprehensive overview of oxide nanofibers, including the structure engineering, derivates, assemblies and their applications. We begin with a brief introduction to the production of nanofibers with diversified compositions, structures and properties, followed by discussions of the wet-chemistry derivates. Afterward, we discuss the applications of catalytic oxide nanofibers, including electrocatalysis, photocatalysis and thermal-catalysis. Then we highlight the most significant role of oxide nanofibers as catalyst support for the immobilization of metal nanoparticles. Moreover, we showcase the advanced assemblies based on oxide nanofibers, including their use as multi-functional membranes and foams. In the end, we offer perspectives on the challenges, opportunities and new directions for future development.
Electrospinning / Oxide nanofiber / Catalyst / Support
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
Meng X., Peng X., Xue J., Wei Y., Sun Y., Dai Y., J. Mater. Chem. A, 2021, DOI: https://doi.org/10.1039/D1TA02004H |
| [98] |
|
| [99] |
Global Nanofibers Market, Trends Analysis & Forecasts to 2021, Research and Markets, https://www.researchandmarkets.com/research/5psrpd/global_nanofibers |
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
/
| 〈 |
|
〉 |