Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection

Jun Wang , Wanlin Fu , Wanlin Xu , Min Wu , Yueming Sun , Yunqian Dai

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 366 -378.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 366 -378. DOI: 10.1007/s40242-021-1110-x
Review

Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection

Author information +
History +
PDF

Abstract

Ultrathin oxide nanofibers are widely used in an array of catalytic applications toward energy conversion and environmental protection. Remarkable progress has been made with regard to the development of engineering oxide nanofibers into unique structures to suit or enable various functions. We aim to provide a comprehensive overview of oxide nanofibers, including the structure engineering, derivates, assemblies and their applications. We begin with a brief introduction to the production of nanofibers with diversified compositions, structures and properties, followed by discussions of the wet-chemistry derivates. Afterward, we discuss the applications of catalytic oxide nanofibers, including electrocatalysis, photocatalysis and thermal-catalysis. Then we highlight the most significant role of oxide nanofibers as catalyst support for the immobilization of metal nanoparticles. Moreover, we showcase the advanced assemblies based on oxide nanofibers, including their use as multi-functional membranes and foams. In the end, we offer perspectives on the challenges, opportunities and new directions for future development.

Keywords

Electrospinning / Oxide nanofiber / Catalyst / Support

Cite this article

Download citation ▾
Jun Wang, Wanlin Fu, Wanlin Xu, Min Wu, Yueming Sun, Yunqian Dai. Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection. Chemical Research in Chinese Universities, 2021, 37(3): 366-378 DOI:10.1007/s40242-021-1110-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown T D, Daltona P D, Hutmacher D W. Prog. Poly. Sci., 201, 56: 116.

[2]

Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S. J. Appl. Phys., 2007, 102: 111101.

[3]

Dai Y Q, Liu W Y, Formo E, Sun Y M, Xia Y N. Polym. Adv. Technol., 2011, 22(3): 326.

[4]

Lu X F, Wang C, Wei Y. Small, 2009, 5(21): 2349.

[5]

Lu X F, Wang C, Favier F, Pinna N. Adv. Energy Mater., 2017, 7: 1601301.

[6]

Liu D, Wan J, Wang H, Pang G, Tang Z. Inorg. Chem. Commun., 2019, 102: 203.

[7]

Gupta R, Kumar A. Biomed. Mater., 2008, 3: 034005.

[8]

Takamura N, Taguchi K, Gunji T, Abe Y. J. Sol-Gel Sci. Techn., 1999, 16(3): 227.

[9]

Su L, Zhu K, Qiu J, Ji H. J. Mater. Sci., 2010, 45(12): 3311.

[10]

Li D, Xia Y N. Nano Lett., 2003, 3(4): 555.

[11]

Yang X G, Shao C L, Liu Y C, Mu R X, Guan H Y. Thin Solid Films, 2005, 478(1/2): 228.

[12]

Cui Z, Wang S, Zhang Y, Cao M. Electrochim. Acta, 2015, 182: 507.

[13]

Ban C, Chernova N A, Whittingham M S. Electrochem. Commun., 2009, 11(3): 522.

[14]

Formo E, Camargo P H C, Lim B, Jiang M, Xia Y. Chem. Phys. Lett., 2009, 476(1—3): 56.

[15]

Zheng W, Li Z Y, Zhang H N, Wang W, Wang Y, Wang C. Mater. Res. Bull., 2009, 44(6): 1432.

[16]

Hwang S H, Song J, Jung Y, Kweon O Y, Song H, Jang J. Chem. Commun., 2011, 47(32): 9164.

[17]

Mahmoodi N M, Keshavarzi S, Oveisi M, Rahimi S, Hayati B. J. Mol. Liq., 2019, 291: 111333.

[18]

Liu R, Ye H, Xiong X, Liu H. Mater. Chem. Phys., 2010, 121(3): 432.

[19]

Du X, Dong F, Tang Z, Zhang J. Appl. Surf. Sci., 2020, 505: 144471.

[20]

Huang J, Liu X, Chen G, Zhang N, Ma R, Qiu G. Solid State Sci., 2018, 82: 24.

[21]

Lu Q, Liu S, Ren M, Song L, Zhao G. J. Sol-Gel Sci. Techn., 2012, 61(1): 169.

[22]

Ouyang W, Liu S, Yao K, Zhao L, Cao L, Jiang S. Compos. Commun., 2018, 9: 76.

[23]

Tsang CHA, Li K, Zeng Y, Zhao W, Zhang T, Zhan Y. Environ. Int., 2019, 125: 200.

[24]

Fu W, Li Z, Xu W, Wang Y, Sun Y, Dai Y. Mater. Today Nano, 2020, 11: 100088.

[25]

Fu W, Dai Y, Li J P H, Liu Z, Yang Y, Sun Y. ACS Appl. Mater. Interfaces, 2017, 9(25): 21258.

[26]

Long C, Li X, Guo J, Shi Y, Liu S, Tang Z. Small Methods, 2019, 3: 1800369.

[27]

Yan C, Chen G, Zhou X, Sun J, Lv C. Adv. Funct. Mater., 201, 26(9): 1428.

[28]

Choi S H, Ankonina G, Youn D Y, Oh S G, Hong J M, Rothschild A. ACS Nano, 2009, 3(9): 2623.

[29]

Li L L, Peng S J, Lee J K Y, Ji D X, Srinivasan M, Ramakrishna S. Nano Energy, 2017, 39: 111.

[30]

Zhu M, Tang J, Wei W, Li S. Mater. Chem. Front., 2020, 4(4): 1105.

[31]

Oh J H, Jo M S, Jeong S M, Cho C, Kang Y C, Cho J S. J. Ind. Eng. Chem., 2019, 77: 76.

[32]

Dai Y Q, Chai Y L, Sun Y B, Fu W L, Wang X T, Gu Q, Zeng T H, Sun Y M. J. Mater. Chem. A, 2015, 3(1): 125.

[33]

Dai Y, Tian J, Fu W. J. Mater. Sci., 2019, 54(14): 10141.

[34]

Liu S, Tian J, Yin K, Li Z, Meng X, Zhu M, Dai Y. Mater. Today Chem., 2020, 17: 100333.

[35]

Fu W, Dai Y, Tian J, Huang C, Liu Z, Liu K. Nanotechnology, 2018, 29(34): 345607.

[36]

Tiwari J N, Tiwari R N, Kim K S. Prog. Mater. Sci., 2012, 57(4): 724.

[37]

Wang X, Xi M, Fong H, Zhu Z. ACS Appl. Mater. Interfaces, 2014, 6(18): 15925.

[38]

Li B, Hao Y, Zhang B, Shao X, Hu L. Appl. Catal. A: Gen., 2017, 531: 1.

[39]

Dai Y, Cobley C M, Zeng J, Sun Y, Xia Y. Nano Lett., 2009, 9(6): 2455.

[40]

Dai Y, Qi X, Fu W, Huang C, Wang S, Zhou J. RSC Adv., 2017, 7(27): 16379.

[41]

Fu W, Liu K, Zou X, Xu W, Zhao J, Zhu M, Sun Y. ACS Sustain. Chem. Eng., 2019, 7(15): 12750.

[42]

Dai Y, Lu X, McKiernan M, Lee E P, Sun Y, Xia Y. J. Mater. Chem., 2010, 20(16): 3157.

[43]

Fu W, Li Z, Wang Y, Sun Y, Dai Y. Chem. Eng. J., 2020, 401: 126013.

[44]

Schneider J, Matsuoka M, Takeuchi M, Zhang J L, Horiuchi Y, Anpo M. Chem. Rev., 2014, 114(19): 9919.

[45]

Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

[46]

Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. ACS Appl. Mater. Interfaces, 2009, 1(5): 1140.

[47]

Singh P, Sharma K, Hasija V, Sharma V, Sharma S, Raizada P. Mater. Today Chem., 2019, 14: 100186.

[48]

Patel A C, Li S, Wang C, Zhang W, Wei Y. Chem. Mater., 2007, 19(6): 1231.

[49]

Rajak A, Miftahul M M, Abdullah M, Khairurrijal Mater. Sci. Forum., 2015, 827: 7.

[50]

Lee S S, Bai H, Liu Z, Sun D D. Water Res., 2013, 47(12): 4059.

[51]

Li L, Cheng B, Wang Y, Yu J. J. Colloid Interface Sci., 2015, 449: 115.

[52]

Barakat N A M, Taha A, Motlak M, Nassar M M, Mahmoud M S, Al-Deyab S S. Appl. Catal. A: Gen., 2014, 481: 19.

[53]

Xu F, Zhang J, Zhu B, Yu J, Xu J. Appl. Catal. B: Environ., 2018, 230: 194.

[54]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F. Science, 2017, 355: 146.

[55]

Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.

[56]

Xue J, Wu T, Dai Y, Xia Y. Chem. Rev., 2019, 119(8): 5298.

[57]

Hosseini S R, Ghasemi S, Kamali-Rousta M. J. Power Sources, 2017, 343: 467.

[58]

Chao G, An X, Zhang L, Tian J, Fan W, Liu T. Compos. Commun., 2021, 24: 100603.

[59]

Long C, Wang K, Shi Y, Yang Z, Zhang X, Zhang Y, Tang Z. Inorg. Chem. Front., 2019, 6(10): 2900.

[60]

Zhang W, Wang H, Guan K, Wei Z, Zhang X, Meng J. ACS Appl. Mater. Interfaces, 2019, 11(30): 26830.

[61]

Chen L, Xu X, Yang W, Jia J. Chin. Chem. Lett., 2020, 31(3): 626.

[62]

Du Q, Wu J, Yang H. ACS Catal., 2014, 4(1): 144.

[63]

Savych I, Subianto S, Nabil Y, Cavaliere S, Jones D, Roziere J. Phys. Chem. Chem. Phys., 2015, 17(26): 16970.

[64]

Park H W, Lee D U, Zamani P, Seo M H, Nazar L F, Chen Z. Nano Energy, 2014, 10: 192.

[65]

Bauer A, Chevallier L, Hui R, Cavaliere S, Zhang J, Jones D. Electrochim. Acta, 2012, 77: 1.

[66]

Kakoria A, Devi B, Anand A, Halder A, Koner R R, Sinha-Ray S. ACS Appl. Nano Mater., 2019, 2(1): 64.

[67]

Zhang X, Gong Y, Li S, Sun C. ACS Catal., 2017, 7(11): 7737.

[68]

Bian J, Su R, Yao Y, Wang J, Zhou J, Li F. ACS Appl. Energy Mater., 2019, 2(1): 923.

[69]

Zhang Y Q, Tao H B, Chen Z, Li M, Sun Y F, Hua B. J. Mater. Chem. A, 2019, 7(46): 26607.

[70]

Piumetti M, Bensaid S, Russo N, Fino D. Appl. Catal. B: Environ., 201, 180: 271.

[71]

Obeid E, Lizarraga L, Tsampas M N, Cordier A, Boreave A, Steil M C. J. Catal., 2014, 309: 87.

[72]

Pena M A, Fierro J L G. Chem. Rev., 2001, 101(7): 1981.

[73]

Lee C, Jeon Y, Hata S, Park J I, Akiyoshi R, Saito H. Appl. Catal. B: Environ., 201, 191: 157.

[74]

Dai Y, Lu P, Cao Z, Campbell C T, Xia Y. Chem. Soc. Rev., 2018, 47(12): 4314.

[75]

Campbell C T, Mao Z. ACS Catal., 2017, 7(12): 8460.

[76]

Rahmati M, Safdari M S, Fletcher T H, Argyle M D, Bartholomew C H. Chem. Rev., 2020, 120(10): 4455.

[77]

Rosman N, Salleh W N W, Aziz F, Ismail A F, Harun Z, Bahri S S. Catalysts, 2019, 9: 565.

[78]

Gupta D, Venugopal J, Mitra S, Dev VRG, Ramakrishna S. Biomaterials, 2009, 30(11): 2085.

[79]

Guo D, Wang J, Zhang L, Chen X, Wan Z, Xi B. Small, 2020, 16: 2002432.

[80]

He Y, Guo H, Hwang S, Yang X, He Z, Braaten J. Adv. Mater., 2020, 32: 2003577.

[81]

Dai Y, Lim B, Yang Y, Cobley C M, Li W, Cho E C, Grayson B, Fanson T P, Campbell T C, Sun Y, Xia Y. Angew. Chem. Int. Ed., 2010, 49(44): 8165.

[82]

Li Z, Zhang H, Zheng W, Wang W, Huang H, Wang C. J. Am. Chem. Soc., 2008, 130(15): 5036.

[83]

Zhang H, Li Z, Liu L, Xu X, Wang Z, Wang W. Sens. Actuators B: Chem., 2010, 147(1): 111.

[84]

Wang W, Li Z, Zheng W, Huang H, Wang C, Sun J. Sens. Actuators B: Chem., 2010, 143(2): 754.

[85]

Liu P, Hou J, Zhang Y, Li L, Lu X, Tang Z. Inorg. Chem. Front., 2020, 7(13): 2560.

[86]

Xu B, Qi S, Jin M, Cai X, Lai L, Sun Z. Chin. Chem. Lett., 2019, 30(12): 2053.

[87]

Li X, Wang C, Yang Y, Wang X F, Zhu M F, Hsiao B S. ACS Appl. Mater. Interfaces, 2014, 6(4): 2431.

[88]

Lin P, Pan C, Wang Z L. Mater. Today Nano, 2018, 4: 17.

[89]

Li W, Wang Y, Ji B, Jiao X, Chen D. RSC Adv., 2015, 5(72): 58120.

[90]

Wang X, Dou L, Yang L, Yu J, Ding B. J. Hazard. Mater., 2017, 324: 203.

[91]

Dai Y, Formo E, Li H, Xue J, Xia Y. Chemsuschem, 201, 9(20): 2912.

[92]

Formo E, Lee E, Campbell D, Xia Y. Nano Lett., 2008, 8(2): 668.

[93]

Sun B, Long Y Z, Zhang H D, Li M M, Duvail J L, Jiang X Y. Prog. Poly. Sci., 2014, 39(5): 862.

[94]

Kim T W, Park S J. J. Colloid Interface Sci., 2017, 486: 287.

[95]

Meng X, Xu W, Li Z, Yang J, Zhao J, Zou X, Sun Y, Dai Y. Adv. Fiber Mater., 2020, 2: 93.

[96]

Yin H, Zhao S, Wan J, Tang H, Chang L, He L, Zhao H, Gao Y, Tang Z. Adv. Mater., 2013, 25(43): 6270.

[97]

Meng X., Peng X., Xue J., Wei Y., Sun Y., Dai Y., J. Mater. Chem. A, 2021, DOI: https://doi.org/10.1039/D1TA02004H

[98]

Tanimu A, Jaenicke S, Alhooshani K. Chem. Eng. J., 2017, 327: 792.

[99]

Global Nanofibers Market, Trends Analysis & Forecasts to 2021, Research and Markets, https://www.researchandmarkets.com/research/5psrpd/global_nanofibers

[100]

Lu X F, Liu X C, Zhang W J, Wang C, Wei Y. J. Colloid Interface Sci., 200, 298(2): 996.

[101]

Akampumuza O, Gao H, Zhang H, Wu D, Qin X H. Macromol Mater. Eng., 2018, 303: 1700269.

[102]

Persano L, Camposeo A, Tekmen C, Pisignano D. Macromol Mater. Eng., 2013, 298(5): 504.

[103]

Jia C, Liu Y, Li L, Song J, Wang H, Liu Z, Li Z, Li B, Fang M, Wu H. Nano Lett., 2020, 20(7): 4993.

[104]

Khalid B, Bai X, Wei H, Huang Y, Wu H, Cui Y. Nano Lett., 2017, 17(2): 1140.

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/