Oil-Water Separation Performance of Electrospray Reduced Graphene Oxide Microspheres with a Local Radially Aligned and Porous Structure

Ruomeng Yu , Yongzheng Shi , Dongzhi Yang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 528 -534.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 528 -534. DOI: 10.1007/s40242-021-1105-7
Article

Oil-Water Separation Performance of Electrospray Reduced Graphene Oxide Microspheres with a Local Radially Aligned and Porous Structure

Author information +
History +
PDF

Abstract

Micro-size oil adsorbents are effective for the rapid remediation of special oil spills. Here, N-doped reduced graphene oxide(RGO) microspheres(ca. 150 µm in diameter) with a local radially aligned and porous structure are fabricated by combining electrospray-freeze-drying with thermal treatment for rapid separation of oil-water. Owing to its hydrophobic/oleophilic properties and oriented structure, the N-doped RGO microspheres achieve high capacities and fast adsorption rates for a variety of oils and organic solvents. Furthermore, excellent oil-water separation performance on floating oil/oil-water emulsions and stable cyclic adsorption capacities are obtained for the local radially aligned and porous microsphere. Therefore, N-doped RGO microspheres with the unique porous structure have the potential for the remediation of oily sewage and oil spills.

Keywords

Electrospray / Radially aligned structure / Microsphere / Reduced graphene oxide / Oil-water separation

Cite this article

Download citation ▾
Ruomeng Yu, Yongzheng Shi, Dongzhi Yang. Oil-Water Separation Performance of Electrospray Reduced Graphene Oxide Microspheres with a Local Radially Aligned and Porous Structure. Chemical Research in Chinese Universities, 2021, 37(3): 528-534 DOI:10.1007/s40242-021-1105-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen P C, Xu Z K. Sci. Rep., 2013, 3: 2776.

[2]

Ivshina I B, Kuyukina M S, Krivoruchko A V, Elkin A A, Makarov S O, Cunningham C J, Peshkur T A, Atlas R M, Philp J C. Environ. Sci. Processes Impacts, 2015, 17: 1201.

[3]

Fu W, Dai Y, Tian J, Huang C, Liu Z, Liu K, Yin L, Huang F, Lu Y, Sun Y. Nanotechnology, 2018, 29: 345607.

[4]

Schrope M. Nat. News, 2010, 466: 680.

[5]

Schrope M. Nat. News, 2011, 472: 152.

[6]

McNutt M K, Camilli R, Crone T J, Guthrie G D, Hsieh P A, Ryerson T B, Savas O, Shaffer F. Proc. Natl. Acad. Sci., 2012, 109: 20260.

[7]

Jernelöv A. Nature, 2010, 466: 182.

[8]

Ryerson T B, Camilli R, Kessler J D, Kujawinski E B, Reddy C M, Valentine D L, Atlas E, Blake D R, de Gouw J, Meinardi S, Parrish D D, Peischl J, Seewald J S, Warneke C. Proc. Natl. Acad. Sci., 2012, 109: 20246.

[9]

McNutt M K, Chu S, Lubchenco J, Hunter T, Dreyfus G, Murawski S A, Kennedy D M. Proc. Natl. Acad. Sci., 2012, 109: 20222.

[10]

Joye S B. Science, 2015, 349: 592.

[11]

Guo X, Bi H, Zafar A, Liang Z, Shi Z, Sun L, Ni Z. Nanotechnology, 2015, 27: 055702.

[12]

Ge J, Zhao H Y, Zhu H W, Huang J, Shi L A, Yu S H. Adv. Mater., 201, 28: 10459.

[13]

Wang S, Song Y, Jiang L. Nanotechnology, 200, 18: 015103.

[14]

Wang S, Liu K, Yao X, Jiang L. Chem. Rev., 2015, 115: 8230.

[15]

Liu S, Xu Q, Latthe S S, Gurav A B, Xing R. RSC Adv., 2015, 5: 68293.

[16]

Zhu Q, Pan Q, Liu F. J. Phys. Chem. C, 2011, 115: 17464.

[17]

Zhang X, Li Z, Liu K, Jiang L. Adv. Funct. Mater., 2013, 23: 2881.

[18]

Kharissova O V, Dias H R, Kharisov B I. RSC Adv., 2015, 5: 6695.

[19]

Kong Z, Wang J, Lu X, Zhu Y, Jiang L. Nano Res., 2017, 10: 1756.

[20]

Li J, Li J, Meng H, Xie S, Zhang B, Li L, Ma H, Zhang J, Yu M. J. Mater. Chem. A, 2014, 2: 2934.

[21]

Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L. Angew. Chem. Int. Ed., 2012, 51: 11371.

[22]

Song X, Lin L, Rong M, Wang Y, Xie Z, Chen X. Carbon, 2014, 80: 174.

[23]

Yang S, Chen L, Mu L, Ma P C. J. Colloid Interface Sci., 2014, 430: 337.

[24]

Liu C, Yang J, Tang Y, Yin L, Tang H, Li C. Colloids Surf. A, 2015, 468: 10.

[25]

Wan W, Zhang R, Li W, Liu H, Lin Y, Li L, Zhou Y. Environ. Sci.: Nano, 201, 3: 107.

[26]

Chen L, Du R, Zhang J, Yi T. J. Mater. Chem. A, 2015, 3: 20547.

[27]

Liao S, Zhai T, Xia H. J. Mater. Chem. A, 201, 4: 1068.

[28]

Yu R, Shi Y, Yang D, Liu Y, Qu J, Yu Z Z. ACS Appl. Mater. Interfaces, 2017, 9: 21809.

[29]

Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339.

[30]

Xu K, Chen G, Qiu D. J. Mater. Chem. A, 2013, 1: 12395.

[31]

Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Adv. Mater., 2009, 21: 4726.

[32]

Wan S, Peng J, Li Y, Hu H, Jiang L, Cheng Q. ACS Nano, 2015, 9: 9830.

[33]

Wang B, Liang W, Guo Z, Liu W. Chem. Soc. Rev., 2015, 44: 336.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/