Promotion of Neurite Outgrowth and Extension Using Injectable Welded Nanofibers

Zhendong Feng , Xiaopei Zhang , Na Liu , Yue Wang , Ziyi Zhou , Oleg O. Glebov , Tong Wu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 522 -527.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 522 -527. DOI: 10.1007/s40242-021-1104-8
Article

Promotion of Neurite Outgrowth and Extension Using Injectable Welded Nanofibers

Author information +
History +
PDF

Abstract

We report a general strategy to develop injectable welded nanofibers to facilitate the outgrowth and extension of neurites. In this case, nonwoven mats of uniaxially aligned poly(caprolactone)(PCL) nanofibers were firstly cut into several small pieces with fixed fiber lengths of 25, 50 and 100 µm, respectively, using a cryotome. A tissuelyser was employed to homogenize and disperse the short nanofibers to a homogeneous suspension. By tuning treatment duration from 100 s to 400 s, the temperature of the suspension was brought close to the melting point of PCL. As such, the short nanofibers were welded at their cross points while the fibers far away from the cross points remain the original structures. We showed that the viability of neuroblastoma SH-SY5Y cells and their neurite outgrowth and extension were enhanced with the use of such welded short nanofibers. Taken together, this study provides a simple way to generate injectable welded nanofibers, holding potential in affecting neurite outgrowth and extension for nerve repair, in particular, in the central nervous system.

Keywords

Electrospinning / Nanofiber / Welding / Injectable / Neurite outgrowth

Cite this article

Download citation ▾
Zhendong Feng, Xiaopei Zhang, Na Liu, Yue Wang, Ziyi Zhou, Oleg O. Glebov, Tong Wu. Promotion of Neurite Outgrowth and Extension Using Injectable Welded Nanofibers. Chemical Research in Chinese Universities, 2021, 37(3): 522-527 DOI:10.1007/s40242-021-1104-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koprivica V, Cho K, Park J, Yiu G, Atwal J, Gore B, Kim J, Lin E, Tessier-Lavigne M, Chen D, He Z. Science, 2005, 310(5745): 106.

[2]

Tran A, Warren P, Silver J. Physiol. Rev., 2018, 98(2): 881.

[3]

Schwab J, Failli V, Chedotal A. The Lancet, 2005, 365(9476): 2055.

[4]

Mukhopadhyay G, Doherty P, Walsh F, Crocker P, Filbin M. Neuron, 1994, 13(3): 757.

[5]

Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi V A, Lim K H C, Ramakrishna S. Chem. Sov. Rev., 2015, 44(3): 790.

[6]

Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, Lvov Y. ACS Nano, 2015, 9(2): 1600.

[7]

Zhang H, Jia X, Han F, Zhao J, Zhao Y, Fan Y, Yuan X. Biomaterials, 2013, 34(9): 2202.

[8]

Fujihara K, Kotaki M, Ramakrishna S. Biomaterials, 2005, 26(19): 4139.

[9]

Kumbar S, Nukavarapu S, James R, Nair L, Laurencin C. Biomaterials, 2008, 29(30): 4100.

[10]

Pektok E, Nottelet B, Tille J, Gurny R, Kalangos A, Moeller M, Walpoth B. Circulation, 2008, 118(24): 2563.

[11]

Koh H, Yong T, Chan C, Ramakrishna S. Biomaterials, 2008, 29(26): 3574.

[12]

Xie J, Liu W, MacEwan M, Bridgman P, Xia Y. ACS Nano, 2014, 8(2): 1878.

[13]

Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Biomaterials, 2007, 28(19): 3012.

[14]

Niu Y, Chen K, He T, Yu W, Huang S, Xu K. Biomaterials, 2014, 35(14): 4266.

[15]

Wu T, Xue J, Li H, Zhu C, Mo X, Xia Y. ACS Appl. Mater Interfaces, 2018, 10(10): 8536.

[16]

Wu T, Li H, Xue J, Mo X, Xia Y. Angew. Chem. Int. Ed., 2019, 58: 16416.

[17]

Elnaggar M, El-Fawal H, Allam N. Mater. Sci. Eng. C, 2021, 119: 111550.

[18]

McMurtrey R J. J. Neural. Eng., 2014, 11(6): 066009.

[19]

Wu T, Xue J, Xia Y. Angew. Chem. Int. Ed., 2020, 59: 15626.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/