Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics
Kaichun Chen , Xuelian Zheng , Cuicui Yang , Wei Quan Tian , Weiqi Li , Ling Yang
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 579 -587.
Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics
In this work, azulene is introduced into nano-graphene with coronene center to enhance the second-order nonlinear optical (NLO) properties. The sum-over-states(SOS) model based calculations demonstrate that dipolar contributions are larger than octupolar contributions to the static first hyperpolarizability(〈β 0〉) in most nano-graphenes except those with high symmetry(e.g., a C 2v nano-graphene has octupolar contributions Φ J=3 up to 59.0% of the 〈β 0〉). Nano-graphenes containing two parallel orientating azulenes (i.e., Out-P and Out-Ps) have large dipole moments, while their ground state is triplet. Introducing B/N/BN atoms into the positions with a high spin density transfers the ground state of Out-P and Out-Ps to closed-shell singlet, and the Out-Ps-2N has a large 〈β 0〉 of 1621.67×10−30 esu. Further addition of an electron donor(NH2) at the pentagon end enhances the 〈β 0〉 to 1906.22×10−30 esu. The two-dimensional second-order NLO spectra predicted by using the SOS model find strong sum frequency generations and difference frequency generations, especially in the near-infrared and visible regions. The strategies to stabilize the electronic structure and improve the NLO properties of azulene-defect carbon nanomaterials are proposed, and those strategies to engineer nano-graphenes to be semiconducting while maintaining the π-framework are extendable to other similar systems.
Nonlinear optics / Azulene-defect nano-graphene / Two-dimensional second-order nonlinear optical spectrum / Sum frequency generation / Difference frequency generation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
Tian W. Q., LinSOSProNLO, V1.01, Registration No. 2017SR526488 and Classification No. 30219-7500. Copyright Protection Center of China: Beijing, China |
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
Yang C.-C., Zheng X.-L., Tian W. Q., Li W.-Q, Yang L., Phys. Chem. Chem. Phys., 2021, DOI: https://doi.org/10.1039/D1CP00383F |
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
/
| 〈 |
|
〉 |