Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics

Kaichun Chen , Xuelian Zheng , Cuicui Yang , Wei Quan Tian , Weiqi Li , Ling Yang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 579 -587.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 579 -587. DOI: 10.1007/s40242-021-1090-x
Article

Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics

Author information +
History +
PDF

Abstract

In this work, azulene is introduced into nano-graphene with coronene center to enhance the second-order nonlinear optical (NLO) properties. The sum-over-states(SOS) model based calculations demonstrate that dipolar contributions are larger than octupolar contributions to the static first hyperpolarizability(〈β 0〉) in most nano-graphenes except those with high symmetry(e.g., a C 2v nano-graphene has octupolar contributions Φ J=3 up to 59.0% of the 〈β 0〉). Nano-graphenes containing two parallel orientating azulenes (i.e., Out-P and Out-Ps) have large dipole moments, while their ground state is triplet. Introducing B/N/BN atoms into the positions with a high spin density transfers the ground state of Out-P and Out-Ps to closed-shell singlet, and the Out-Ps-2N has a large 〈β 0〉 of 1621.67×10−30 esu. Further addition of an electron donor(NH2) at the pentagon end enhances the 〈β 0〉 to 1906.22×10−30 esu. The two-dimensional second-order NLO spectra predicted by using the SOS model find strong sum frequency generations and difference frequency generations, especially in the near-infrared and visible regions. The strategies to stabilize the electronic structure and improve the NLO properties of azulene-defect carbon nanomaterials are proposed, and those strategies to engineer nano-graphenes to be semiconducting while maintaining the π-framework are extendable to other similar systems.

Keywords

Nonlinear optics / Azulene-defect nano-graphene / Two-dimensional second-order nonlinear optical spectrum / Sum frequency generation / Difference frequency generation

Cite this article

Download citation ▾
Kaichun Chen, Xuelian Zheng, Cuicui Yang, Wei Quan Tian, Weiqi Li, Ling Yang. Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics. Chemical Research in Chinese Universities, 2022, 38(2): 579-587 DOI:10.1007/s40242-021-1090-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Canioni L, Bellec M, Royon A, Bousquet B, Cardinal T. Opt. Lett., 2008, 33: 360.

[2]

Cotter D, Blow R J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Science, 1999, 286: 1523.

[3]

Min W, Freudiger C W, Lu S, Xie X S. Annu. Rev. Phys. Chem., 2011, 62: 507.

[4]

Pintre I C, Serrano J L, Ros M B, Martíenez-Perdiguero J, Alonso I, Ortega J, Folcia C L, Etxebarria J, Alicante R, Villacampa B. J. Mater. Chem., 2010, 20: 2965.

[5]

Fanti M, Orlandi G, Zerbetto F. J. Am. Chem. Soc., 1995, 117: 6101.

[6]

Feng M, Zhan H B, Chen Y. Appl. Phys. Lett., 2010, 96: 033107.

[7]

Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J. Adv. Mater., 2009, 21: 2430.

[8]

Cao L, Sahu S, Anilkumar P, Kong C Y, Sun Y P. MRS Bull., 2012, 37: 1283.

[9]

Liu Z B, Zhang X L, Chen Y S, Tian J G. Chin. Sci. Bull., 2012, 57: 2971.

[10]

Wang J, Chen Y, Blau W J. J. Mater. Chem., 2009, 19: 7425.

[11]

Paul D, Deb J, Sarkar U. ChemistrySelect, 2020, 5: 6987.

[12]

Loboda O, Zalésny R, Avramopoulos A, Luis J M, Kirtman B, Tagmatarchis N, Reis H, Papadopoulos M G. J. Phys. Chem. A, 2009, 113: 1159.

[13]

Zhou Z J, Yu G T, Ma F, Huang X R, Wu Z J, Li Z R. J. Mater. Chem. C, 2014, 2: 306.

[14]

Karamanis P, Otero N, Pouchan C. J. Am. Chem. Soc., 2014, 136: 7464.

[15]

Pegu D, Deb J, Alsenoy C V, Sarkar U. Spectrosc. Lett., 2017, 50: 232.

[16]

Deb J, Saha S K, Paul M K, Sarkar U. J. Mol. Struct., 2018, 1160: 167.

[17]

Deb J, Paul D, Sarkar U. AIP Conference Proceedings, 2019, 2115: 030169.

[18]

Melcamu Y Y, Wena S Z, Yan L K, Zhang T, Su Z M. Mol. Simul., 2013, 39: 214.

[19]

Dalton L R, Harper A W, Ghosn R. Chem. Mater., 1995, 7: 1060.

[20]

Wang W L, Kan Y H, Wang L, Sun S L, Qiu Y Q. J. Phys. Chem. C, 2014, 118: 28746.

[21]

Priyadarshy S, Therien M J, Beratan D N. J. Am. Chem. Soc., 199, 118: 1504.

[22]

Clays K, Hendrickx E, Verbiest T, Persoons A. Adv. Mater., 1998, 10: 643.

[23]

Zyss J, Ledoux I. Chem. Rev., 1994, 94: 77.

[24]

Vivas M G, Silva D L, Rodriguez R D F, Canuto S, Malinge J, Ishow E, Mendonca C R, De Boni L. J. Phys. Chem. C, 2015, 119: 12589.

[25]

Bella S D, Colombo A, Dragonetti C, Righetto S, Roberto D. Inorganics, 2018, 6: 133.

[26]

Li W Q, Zhou X, Tian W Q, Sun X D. Phys. Chem. Chem. Phys., 2013, 15: 1810.

[27]

Li W Q, Hu Y Y, Zhong C, Zhou X, Wang M Q, Tian W Q, Goddard J D. J. Mater. Chem. C, 201, 4: 6054.

[28]

Zhu Z Z, Chen Z C, Yao Y R, Cui C H, Li S H, Zhao X J, Zhang Q Y, Tian H R, Xu P Y, Xie F F, Xie X M, Tan Y Z, Deng S L, Quimby J M, Scott L T, Xie S Y, Huang R B, Zheng L S. Sci. Adv., 2019, 5: eaaw0982.

[29]

Deb J, Paul D, Sarkar U. J. Phys. Chem. A, 2020, 124: 1312.

[30]

Dai Y F, Li Z Y, Yang J L. J. Phys. Chem. C, 2014, 118: 3313.

[31]

Yang C-C, He Y-Y, Zheng X-L, Chen J, Yang L, Li W-Q, Tian W Q. J. Mater. Chem. C, 2020, 8: 1879.

[32]

Kapko V, Drabold D A, Thorpe M F. Phys. Status Solidi B, 2010, 247: 1197.

[33]

Kawasumi K, Zhang Q Y, Segawa Y, Scott L T, Itami K. Nat. Chem., 2013, 5: 739.

[34]

Dai Y F, Li Z Y, Yang J L. Carbon, 201, 100: 428.

[35]

Cui C X, Tian Y, Zhang Y P, Qu L B, Lan Y. Carbon, 2019, 143: 385.

[36]

Wheland G W, Mann D E. J. Chem. Phys., 1949, 17: 264.

[37]

Guo J J, Morris J R, Ihm Y, Contescu C I, Gallego N C, Duscher G, Pennycook S J, Chisholm M F. Small, 2012, 8: 3283.

[38]

He Y-Y, Chen J, Zheng X-L, Xu X D, Li W-Q, Yang L, Tian W Q. ACS Appl. Nano Mater., 2019, 2: 1648.

[39]

Yazyev O V, Louie S G. Nat. Mater., 2010, 9: 806.

[40]

Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M. Nat. Mater., 2012, 11: 759.

[41]

Ma J, Fu Y B, Dmitrieva E, Liu F, Komber H, Hennersdorf F, Popov A A, Weigand J J, Liu J Z, Feng X L. Angew. Chem. Int. Ed., 2020, 59: 5637.

[42]

Han Y, Xue Z B, Li G W, Gu Y W, Ni Y, Dong S Q, Chi C Y. Angew. Chem. Int. Ed., 2020, 59: 9026.

[43]

Zhang X S, Huang Y Y, Zhang J, Meng W, Peng Q, Kong R R, Xiao Z W, Liu J, Huang M F, Yi Y Q, Chen L L, Fan Q R, Lin G B, Liu Z T, Zhang G X, Jiang L, Zhang D Q. Angew. Chem. Int. Ed., 2020, 59: 3529.

[44]

Ito S, Inabe H, Morita N, Ohta K, Kitamura T, Imafuku K. J. Am. Chem. Soc., 2003, 125: 1669.

[45]

Ito S, Ando M, Nomura A, Morita N, Kabuto C, Mukai H, Ohta K, Kawakami J, Yoshizawa A, Tajiri A. J. Org. Chem., 2005, 70: 3939.

[46]

Wang X Y, Yao X L, Müllen K. Sci. China: Chem., 2019, 62: 1099.

[47]

Feng X L, Pisula W, Müllen K. Pure Appl. Chem., 2009, 81: 2203.

[48]

Adamo C, Barone V. J. Chem. Phys., 1999, 110: 6158.

[49]

Hehre W J, Ditchfield R, Pople J A. J. Chem. Phys., 1972, 56: 2257.

[50]

Hariharan P C, Pople J A. Theoret. Chim. Acta, 1973, 28: 213.

[51]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision D.01, 2013, Wallingford, CT: Gaussian, Inc.

[52]

Ridley J, Zerner M. Theoret. Chim. Acta, 1973, 32: 111.

[53]

Orr B J, Ward J F. Mol. Phys., 1971, 20: 513.

[54]

Bishop D M. J. Chem. Phys., 1994, 100: 6535.

[55]

Tian W Q. J. Comput. Chem., 2012, 33: 466.

[56]

Tian W. Q., LinSOSProNLO, V1.01, Registration No. 2017SR526488 and Classification No. 30219-7500. Copyright Protection Center of China: Beijing, China

[57]

Beljonne D, Cornil J, Shuai Z, Brédas J-L, Rohlfing F, Bradlley D D C, Torruellas W E, Ricci V, Stegeman G I. Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 55: 1505.

[58]

Lalama S J, Garito A F. Phys. Rev. A: At., Mol., Opt. Phys., 1979, 20: 1179.

[59]

Otero N, Pouchan C, Karamanis P. J. Mater. Chem. C, 2017, 5: 8273.

[60]

Pierce B M. J. Chem. Phys., 1989, 91: 791.

[61]

Lehtinen O, Vats N, Algara-Siller G, Knyrim P, Kaiser U. Nano Lett., 2015, 15: 235.

[62]

Gao X, Zhou Z, Zhao Y, Nagase S, Zhang S B, Chen Z. J. Phys. Chem. C, 2008, 112: 12677.

[63]

Zhang L, Qi D, Zhao L, Chen C, Bian Y, Li W. J. Phys. Chem. A, 2012, 116: 10249.

[64]

Arturo J S, Itzel I M, Gabriel R O, Jesús R R, Norberto F, Rosa S. J. Phys. Chem. A, 201, 120: 4314.

[65]

Lu T, Chen F. J. Comput. Chem., 2012, 33: 580.

[66]

Solà M. Front. Chem., 2013, 1: 1.

[67]

Saha B, Bhattacharyya P K. ACS Omega, 2018, 3: 16753.

[68]

Ito S, Tokimaru Y, Nozaki K. Angew. Chem. Int. Ed., 2015, 54: 1.

[69]

Liu Z Q, Marder T B. Angew. Chem. Int. Ed., 2008, 47: 242.

[70]

Wang J H, Zubarev D Y, Philpott M R, Vukovic S, Lester W A, Cui T, Kawazoe Y. Phys. Chem. Chem. Phys., 2010, 12: 9839.

[71]

Plasser F, Pašalić H, Gerzabek M H, Libisch F, Reiter R, Burgdçrfer J, Müller T, Shepard R, Lischka H. Angew. Chem. Int. Ed., 2013, 52: 2581.

[72]

Jiang D E, Dai S. Chem. Phys. Lett., 2008, 466: 72.

[73]

Tan Y Z, Yang B, Parvez K, Narita A, Osella S, Beljonne D, Feng X L, Müllen K. Nat. Commun., 2013, 4: 2646.

[74]

Dai Y F, Li Z Y, Yang J L. ChemPhysChem, 2015, 16: 2783.

[75]

Agrawal G P, Cojan C, Flytzanis C. Phys. Rev. B: Condens. Matter Mater. Phys., 1978, 17: 776.

[76]

Kato K, Lin H A, Kuwayama M, Nagase M, Segawa Y, Scottd L T, Itami K. Chem. Sci., 2019, 10: 9038.

[77]

Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 393: 51.

[78]

Yang C.-C., Zheng X.-L., Tian W. Q., Li W.-Q, Yang L., Phys. Chem. Chem. Phys., 2021, DOI: https://doi.org/10.1039/D1CP00383F

[79]

Frattarelli D, Schiavo M, Facchetti A, Ratner M A, Marks T J. J. Am. Chem. Soc., 2009, 131: 12595.

[80]

Gieseking R L, Mukhopadhyay S, Risko C, Brédas J-L. ACS Photonics, 2014, 1: 261.

[81]

Xiao D Q, Bulat F A, Yang W T, Beratan D N. Nano Lett., 2008, 8: 2814.

[82]

Yamaguchi Y, Ogawa K, Nakayama K I, Ohba Y, Katagiri H. J. Am. Chem. Soc., 2013, 135: 19095.

[83]

Ohtsu K, Hayami R, Sagawa T, Tsukada S, Yamamoto K, Gunji T. Tetrahedron, 2019, 75: 130658.

[84]

Jacquemin D, Champagne B, André J M. Chem. Phys., 1995, 197: 107.

[85]

Lepetit L, Joffre M. Opt. Lett., 199, 21: 564.

[86]

Lepetie L, Chériaux G, Joffre M. J. Nonlinear Opt. Phys. Mater., 2012, 5: 465.

[87]

Chen J, Wang M Q, Zhou X, Yang L, Li W Q, Tian W Q. Phys. Chem. Chem. Phys., 2017, 19: 29315.

[88]

Cockayne E, Rutter G M, Guisinger N P, Crain J N, First P N, Stroscio J A. Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 83: 195425.

[89]

Hou I C Y, Sun Q, Eimre K, Giovannantonio M D, Urgel J, Ruffieux P, Narita A, Fasel R, Müllen K. J. Am. Chem. Soc., 2020, 142: 10291.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/