Synthesis of Ternary Ni/Mo2C/Carbon Nanofibers as Low-cost Counter Electrode for Efficient Dye-sensitized Solar Cells

Ju Qiu , Hao Wang , Jing Wang , Ce Wang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 480 -487.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 480 -487. DOI: 10.1007/s40242-021-1083-9
Article

Synthesis of Ternary Ni/Mo2C/Carbon Nanofibers as Low-cost Counter Electrode for Efficient Dye-sensitized Solar Cells

Author information +
History +
PDF

Abstract

To reduce the cost of manufacture, it is urgent to develop efficient and stable platinum(Pt)-free counter electrode(CEs) electrocatalysts for dye-sensitized solar cells(DSSCs). In this study, a simple electrospinning and carbonization strategy has been developed to synthesize carbon nanofibers(CNFs) loaded with Ni and Mo2C nanoparticles(Ni/Mo2C/CNFs) as CE. Owing to the high electrical conductivity of CNFs and the large catalytic activity of Ni and Mo2C, an excellent electrochemical performance of Ni/Mo2C/CNFs as CE is achieved. The optimized DSSC assembled with Ni/Mo2C(2:1)/CNFs-based CE exhibits a power conversion efficiency(PCE) of 8.90%, which exceeds the corresponding values of the device using the Pt(8.07%), Ni/Mo2C(1:1)/CNFs(8.68%), Ni/Mo2C(1:2)/CNFs(8.20%), Ni/CNFs(7.50%) and Mo2C/CNFs(6.10%). This work provides a new strategy for developing effective and low-cost CE materials in DSSCs.

Keywords

Ni / Mo2C / Carbon nanofiber / Dye-sensitized solar cell / Counter electrode

Cite this article

Download citation ▾
Ju Qiu, Hao Wang, Jing Wang, Ce Wang. Synthesis of Ternary Ni/Mo2C/Carbon Nanofibers as Low-cost Counter Electrode for Efficient Dye-sensitized Solar Cells. Chemical Research in Chinese Universities, 2021, 37(3): 480-487 DOI:10.1007/s40242-021-1083-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Regan B, Grätzel M. Nature, 1991, 353: 737.

[2]

Grätzel M. Inorg. Chem., 2005, 44(20): 6841.

[3]

Xiao Y, Wu J, Yue G, Lin J, Huang M, Fan L, Lan Z. J. Power Sources, 2012, 208: 197.

[4]

Erwin W R, Oakes L, Chatterjee S, Zarick H F, Pint C L, Bardhan R. ACS Appl. Mater. Interfaces, 2014, 6(12): 9904.

[5]

Mohamed I M A, Motlak M, Akhtar M S, Yasin A S, El-Newehy M H, Al-Deyab S S, Barakat N A M. Ceram. Int., 201, 42(1): 146.

[6]

Olsen E, Hagen G, Lindquist S E. Sol. Energy Mater. Sol. Cells, 2000, 63(3): 267.

[7]

Wu M, Lin X, Hagfeldt A, Ma T. Chem. Commun., 2011, 47(15): 4535.

[8]

Vijayakumar P, Pandian M S, Lim S P, Pandikumar A, Huang N M, Mukhopadhyay S, Ramasamy P. Mater. Sci. Semicond. Process., 2015, 39: 292.

[9]

Zheng X, Guo J, Shi Y, Xiong F, Zhang W, Ma T, Li C. Chem. Commun., 2013, 49(83): 9645.

[10]

Janani M, Srikrishnarka P, Nair S V, Nair A S. J. Mater. Chem. A, 2015, 3(35): 17914.

[11]

Wu M, Lin X, Wang T, Qiu J, Ma T. Energy Environ. Sci., 2011, 4(6): 2308.

[12]

Wei W, Wang H, Hu Y H. Int. J. Energy Res., 2014, 38(9): 1099.

[13]

Liao Y, Pan K, Pan Q, Wang G, Wang W, Fu H. Nanoscale, 2015, 7(5): 1623.

[14]

Chen M, Wang G, Yang W, Yuan Z, Qian X, Xu J, Huang Z, Ding A. ACS Appl. Mater. Interfaces, 2019, 11(45): 42156.

[15]

Wu C, Li R, Wang Y, Lu S, Lin J, Liu Y, Zhang X. Chem. Commun., 2020, 56(69): 10046.

[16]

Chen M, Shao L L. Chem. Eng. J., 201, 304: 629.

[17]

Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q. ACS Appl. Mater. Interfaces, 2010, 2(12): 3572.

[18]

Murakami T N, Ito S, Wang Q, Nazeeruddin M K, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Pechy P, Graetzel M. J. Electrochem. Soc., 200, 153(12): A2255.

[19]

Motlak M, Barakat N A M, Akhtar M S, Hamza A M, Kim B S, Kim C S, Khalil K A, Almajid A A. Electrochim. Acta, 2015, 160: 1.

[20]

Zhou Z, Sigdel S, Gong J, Vaagensmith B, Elbohy H, Yang H, Krishnan S, Wu X F, Qiao Q. Nano Energy, 201, 22: 558.

[21]

Barakat N A M, Akhtar M S, Yousef A, El-Newehy M, Kim H Y. Chem. Eng. J., 2012, 211: 9.

[22]

Ahn S H, Klein M J, Manthiram A. Adv. Energy Mater., 2017, 7(7): 1601979.

[23]

Zheng H, Guo H, An D, Wu K, Gao C, Han Q, Zhu Y, Lin Y, Wu M. J. Mater. Chem. C, 201, 4(27): 6533.

[24]

Wu M, Lin Y, Guo H, Wu K, Lin X. Chem. Commun., 2014, 50(57): 7625.

[25]

Ma F, Wu H B, Xia BY, Xu C, Lou X W. Angew. Chem., Int. Ed., 2015, 54(51): 15395.

[26]

Hu B, Tang Q, He B, Lin L, Chen H. J. Power Sources, 2014, 267: 445.

[27]

Lu X F, Yu L, Zhang J T, Lou X W. Adv. Mater., 2019, 31(30): 1900699.

[28]

Wang S P, Wang J, Zhu M L, Bao X B, Xiao B Y, Su D F, Li H R, Wang Y. J. Am. Chem. Soc., 2015, 137(50): 15753.

[29]

Liang Q R, Jin H H, Wang Z, Xiong Y L, Yuan S, Zeng X C, He D P, Mu S C. Nano Energy, 2019, 57: 746.

[30]

Mu H, Liu J, Li H, Li Y, Liu X, Shi D, Wu Q, Jiao Q. J. Mater. Chem. A, 2018, 6(14): 5603.

[31]

Zhang T, Yun S, Li X, Huang X, Hou Y, Liu Y, Li J, Zhou X, Fang W. J. Power Sources, 2017, 340: 325.

[32]

Yuan H, Liu J, Jiao Q, Li Y, Liu X, Shi D, Wu Q, Zhao Y, Li H. Carbon, 2017, 119: 225.

[33]

Sun H, Luo Y, Zhang Y, Li D, Yu Z, Li K, Meng Q. J. Phys. Chem. C, 2010, 114(26): 11673.

[34]

Van-Duong D, Choi H. ACS Appl. Mater. Interfaces, 201, 8(1): 1004.

[35]

Yun S, Lund P D, Hinsch A. Energy Environ. Sci., 2015, 8(12): 3495.

[36]

Yun S, Hou Y, Wang C, Zhang Y, Zhou X. Ceram. Int., 2019, 45(12): 15589.

[37]

Qian X, Liu H, Yang J, Wang H, Huang J, Xu C. J. Mater. Chem. A, 2019, 7(11): 6337.

[38]

Xia J, Wang Q, Xu Q, Yu R, Chen L, Jiao J, Fan S, Wu H. Appl. Surf. Sci., 2020, 530: 147238.

[39]

Meng X, Yu C, Song X, Liu Y, Liang S, Liu Z, Hao C, Hao J. Adv. Energy Mater., 2015, 5(11): 1500180.

[40]

Huo J, Wu J, Zheng M, Tu Y, Lan Z. J. Power Sources, 201, 304: 266.

[41]

Zheng J, Zhou W, Ma Y, Cao W, Wang C, Guo L. Chem. Commun., 2015, 51(64): 12863.

[42]

Theerthagiri J, Senthil A, Buraidah M H, Madhavan J, Arof A K, Ashokkumar M. J. Mater. Chem. A, 201, 4(41): 16119.

[43]

Lee K, Cho S, Kim M, Kim J, Ryu J, Shin K Y, Jang J. J. Mater. Chem. A, 2015, 3(37): 19018.

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/