Synthesis of Ternary Ni/Mo2C/Carbon Nanofibers as Low-cost Counter Electrode for Efficient Dye-sensitized Solar Cells
Ju Qiu , Hao Wang , Jing Wang , Ce Wang
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 480 -487.
Synthesis of Ternary Ni/Mo2C/Carbon Nanofibers as Low-cost Counter Electrode for Efficient Dye-sensitized Solar Cells
To reduce the cost of manufacture, it is urgent to develop efficient and stable platinum(Pt)-free counter electrode(CEs) electrocatalysts for dye-sensitized solar cells(DSSCs). In this study, a simple electrospinning and carbonization strategy has been developed to synthesize carbon nanofibers(CNFs) loaded with Ni and Mo2C nanoparticles(Ni/Mo2C/CNFs) as CE. Owing to the high electrical conductivity of CNFs and the large catalytic activity of Ni and Mo2C, an excellent electrochemical performance of Ni/Mo2C/CNFs as CE is achieved. The optimized DSSC assembled with Ni/Mo2C(2:1)/CNFs-based CE exhibits a power conversion efficiency(PCE) of 8.90%, which exceeds the corresponding values of the device using the Pt(8.07%), Ni/Mo2C(1:1)/CNFs(8.68%), Ni/Mo2C(1:2)/CNFs(8.20%), Ni/CNFs(7.50%) and Mo2C/CNFs(6.10%). This work provides a new strategy for developing effective and low-cost CE materials in DSSCs.
Ni / Mo2C / Carbon nanofiber / Dye-sensitized solar cell / Counter electrode
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
/
| 〈 |
|
〉 |