Combination of Organic and Inorganic Electrolytes for Composite Membranes Toward Applicable Solid Lithium Batteries

Shuang Mu , Zhijie Bi , Shenghan Gao , Xiangxin Guo

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 246 -253.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 246 -253. DOI: 10.1007/s40242-021-1054-1
Review

Combination of Organic and Inorganic Electrolytes for Composite Membranes Toward Applicable Solid Lithium Batteries

Author information +
History +
PDF

Abstract

To meet the demand for long-range electric vehicles with high-energy-density batteries, the solid-state batteries(SSBs) have attracted ever-increasing attention due to their enormous potential in affording the energy density greater than 400 W·h/kg. As the key materials, the solid electrolytes can be classified as inorganic electrolyte and organic electrolyte. The former usually has high ionic conductivity, good stability and mechanical properties, whereas being heavy and brittle. The latter is usually flexible, light and easy to mass produce, nevertheless has poor ionic conductivity and stability. Thus, the combination of the organic and the inorganic electrolytes for the composite membranes has become the inevitable trend to achieve the high energy density and safety of lithium batteries. From the perspective of practical application, this paper discusses how to construct the ideal organic-inorganic composite solid electrolyte with low areal specific resistance, thin texture, wide electrochemical window and high safety for applicable SSBs. Furthermore, the critical challenges and future development directions are prospected for the composite solid electrolytes.

Keywords

Composite electrolyte / Solid-state lithium battery / Energy density / Security

Cite this article

Download citation ▾
Shuang Mu, Zhijie Bi, Shenghan Gao, Xiangxin Guo. Combination of Organic and Inorganic Electrolytes for Composite Membranes Toward Applicable Solid Lithium Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 246-253 DOI:10.1007/s40242-021-1054-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo S, Sun Y, Cao A. Chem. Res. Chinese. Universities., 2020, 36(3): 329.

[2]

Samson A J, Hofstetter K, Bag S, Thangadurai V. Energy Environ. Sci., 2019, 12: 2957.

[3]

Thangadurai V, Narayanan S, Pinzaru D. Chem. Soc. Rev., 2014, 43: 4714.

[4]

Xie Z, Wu Z, An X, Yoshida A, Wang Z, Hao X, Abudula A, Guan G. J. Membr. Sci., 2019, 586: 122.

[5]

Bi Z, Zhao N, Ma L, Shi C, Fu Z, Xu F, Guo X. J. Mater. Chem. A, 2020, 8: 4252.

[6]

Bi Z, Zhao N, Ma L, Fu Z, Xu F, Wang C, Guo X. Chem. Eng. J., 2020, 387: 124089.

[7]

Ates T, Keller M, Kulisch J, Adermann T, Passerini S. Energy Storage Mater., 2019, 17: 204.

[8]

Chen F, Zha W, Yang D, Cao S, Shen Q, Zhang L, Sadoway D R. J. Electrochem. Soc., 2018, 165A: 3558.

[9]

Karthik K, Murugan R. J. Solid State Electrochem., 2018, 22: 2989.

[10]

Wang L, Liu D, Huang T, Geng Z, Yu A. RSC Adv., 2020, 10: 10038.

[11]

Jia M, Zhao N, Huo H, Guo X. Electrochem. Energy Rev., 2020, 3: 656.

[12]

Mu S, Huang W, Sun W, Zhao N, Jia M, Bi Z, Guo X. J. Energy Chem., 2021, 60: 162.

[13]

Bi J, Mu D, Wu B, Fu J, Yang H, Mu G, Zhang L, Wu F. J. Mater. Chem. A, 2020, 8: 706.

[14]

Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L. Energy Storage Mater., 201, 5: 139.

[15]

Yuan H, Liu J, Lu Y, Zhao C, Cheng X, Nan H, Liu Q, Huang J, Zhang Q. Chem. Res. Chinese. Universities., 2020, 36(3): 377.

[16]

Li X, Liang J, Yang X, Adair K R, Wang C, Zhao F, Sun X. Energy Environ. Sci., 2020, 13: 1429.

[17]

Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough J B. Nano Energy, 2018, 46: 176.

[18]

Cui G. Matter, 2020, 2: 805.

[19]

Choi J-H, Lee C-H, Yu J-H, Doh C-H, Lee S-M. J. Power Sources, 2015, 274: 458.

[20]

Cheng S H-S, He K-Q, Liu Y, Zha J-W, Kamruzzaman M, Ma R L-W, Dang Z-M, Li R K Y, Chung C Y. Electrochim. Acta, 2017, 253: 430.

[21]

Zhang J, Zhao N, Zhang M, Li Y, Chu P K, Guo X, Di Z, Wang X, Li H. Nano Energy, 201, 28: 447.

[22]

Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Adv. Energy Mater., 2019, 9: 1804004.

[23]

Zhao N, Li Y, Zhang J, Di Z, Guo X. Energy Storage Sci. Technol., 201, 5: 754.

[24]

Sun Y, Zhan X, Hu J, Wang Y, Gao S, Shen Y, Cheng Y T. ACS Appl. Mater. Interfaces, 2019, 11: 12467.

[25]

Jia M, Zhao N, Bi Z, Fu Z, Xu F, Shi C, Guo X. ACS Appl. Mater. Interfaces, 2020, 12: 46162.

[26]

Huang Z, Pang W, Liang P, Jin Z, Grundish N, Li Y, Wang C-A. J. Mater. Chem. A, 2019, 7: 16425.

[27]

Liu W, Liu N, Sun J, Hsu P C, Li Y, Lee H W, Cui Y. Nano Lett., 2015, 15: 2740.

[28]

Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Appl. Mater. Interfaces, 2017, 9: 21773.

[29]

Liu W, Lee S W, Lin D, Shi F, Wang S, Sendek A D, Cui Y. Nature Energy, 2017, 2: 17035.

[30]

Song S, Wu Y, Tang W, Deng F, Yao J, Liu Z, Hu R, Alamusi, Wen Z, Lu L, Hu N. ACS Sustainable Chem. Eng., 2019, 7: 7163.

[31]

Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough J B, Yu G. Angew. Chem., Int. Ed. Engl., 2018, 57: 2096.

[32]

Fu K, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman E D, Hu L. PNAS, 201, 113: 7094.

[33]

Zekoll S, Marriner-Edwards C, Hekselman A K O, Kasemchainan J, Kuss C, Armstrong D E J, Cai D, Wallace R J, Richter F H, Thijssen J H J, Bruce P G. Energy Environ. Sci., 2018, 11: 185.

[34]

Xie H, Yang C, Fu K K, Yao Y, Jiang F, Hitz E, Liu B, Wang S, Hu L. Adv. Energy Mater., 2018, 8: 1703474.

[35]

Li L, Deng Y, Chen G. J. Energy Chem., 2020, 50: 154.

[36]

Bates J B, Gruzalski G R, Dudney N J, Luck C F, Yu X. Solid State Ionics, 1994, 70/71: 619.

[37]

Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L-Z, Nan C-W. Joule, 2019, 3: 1190.

[38]

Zhai P, Peng N, Sun Z, Wu W, Kou W, Cui G, Zhao K, Wang J. J. Mater. Chem. A, 2020, 8: 23344.

[39]

Huo H, Sun J, Chen C, Meng X, He M, Zhao N, Guo X. J. Power Sources, 2018, 383: 150.

[40]

He Z, Chen L, Zhang B, Liu Y, Fan L-Z. J. Power Sources, 2018, 392: 232.

[41]

Jiang Z, Wang S, Chen X, Yang W, Yao X, Hu X, Han Q, Wang H. Adv. Mater., 2020, 32: e1906221.

[42]

Chen F, Yang D, Zha W, Zhu B, Zhang Y, Li J, Gu Y, Shen Q, Zhang L, Sadoway D R. Electrochim. Acta, 2017, 258: 1106.

[43]

Han P, Zhu Y, Liu J. J. Power Sources, 2015, 284: 459.

[44]

Xu H, Zhang X, Jiang J, Li M, Shen Y. Solid State Ionics, 2020, 347: 115227.

[45]

Zeng X-X, Yin Y-X, Li N-W, Du W-C, Guo Y-G, Wan L-J. J. Am. Chem. Soc., 201, 138: 15825.

[46]

Li Z, Xie H-X, Zhang X-Y, Guo X. J. Mater. Chem. A, 2020, 8: 3892.

[47]

Chai J, Chen B, Xian F, Wang P, Du H, Zhang J, Liu Z, Zhang H, Dong S, Zhou X, Cui G. Small, 2018, 14: 1802244.

[48]

Bi Z, Mu S, Zhao N, Sun W, Huang W, Guo X. Energy Storage Mater., 2021, 35: 512.

[49]

Zhang X Q, Li T, Li B Q, Zhang R, Shi P, Yan C, Huang J Q, Zhang Q. Angew. Chem., Int. Ed. Engl., 2020, 59: 3252.

[50]

Zhu P, Yan C, Dirican M, Zhu J, Zang J, Selvan R K, Chung C-C, Jia H, Li Y, Kiyak Y, Wu N, Zhang X. J. Mater. Chem. A, 2018, 6: 4279.

[51]

Gao J, Shao Q, Chen J. J. Energy Chem., 2020, 46: 237.

[52]

Ding J, Xu R, Yan C, Xiao Y, Liang Y, Yuan H, Huang J. Chin. Chem. Lett., 2020, 31: 2339.

[53]

Zhu L, Zhu P, Fang Q, Jing M, Shen X, Yang L. Electrochim. Acta, 2018, 292: 718.

[54]

Li Y, Zhang W, Dou Q, Wong K W, Ng K M. J. Mater. Chem. A, 2019, 7: 3391.

[55]

Zhu P, Yan C, Zhu J, Zang J, Li Y, Jia H, Dong X, Du Z, Zhang C, Wu N, Dirican M, Zhang X. Energy Storage Mater., 2019, 17: 220.

[56]

Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F. ACS Appl. Mater. Interfaces, 2017, 9: 13694.

[57]

Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang Q-H, Kang F, He Y-B. Adv. Funct. Mater., 2019, 29: 1805301.

[58]

Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough J B. Adv. Mater., 2019, 31: e1805574.

[59]

Nie K, Wang X, Qiu J, Wang Y, Yang Q, Xu J, Yu X, Li H, Huang X, Chen L. ACS Energy Lett., 2020, 5: 826.

[60]

Yu X, Li J, Manthiram A. ACS Materials Letters, 2020, 2: 317.

[61]

González F, Garcia-Calvo O, Tiemblo P, García N, Fedeli E, Thieu T, Urdampilleta I, Kvasha A. J. Electrochem. Soc., 2020, 167: 070519.

[62]

Wu B, Wang S, Lochala J, Desrochers D, Liu B, Zhang W, Yang J, Xiao J. Energy Environ. Sci., 2018, 11: 1803.

[63]

Ruan Y, Lu Y, Li Y, Zheng C, Su J, Jin J, Xiu T, Song Z, Badding M E, Wen Z. Adv. Funct. Mater., 2020, 31: 2007815.

[64]

Cai M, Lu Y, Su J, Ruan Y, Chen C, Chowdari B V R, Wen Z. ACS Appl. Mater. Interfaces, 2019, 11: 35030.

[65]

Hongahally Basappa R, Ito T, Morimura T, Bekarevich R, Mitsuishi K, Yamada H. J. Power Sources, 2017, 363: 145.

[66]

Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X. Energy Environ. Sci., 2020, 13: 127.

[67]

Wang X, Zhang Y, Zhang X, Liu T, Lin Y H, Li L, Shen Y, Nan C W. ACS Appl. Mater. Interfaces, 2018, 10: 24791.

[68]

Han L, Wang J, Mu X, Wu T, Liao C, Wu N, Xing W, Song L, Kan Y, Hu Y. J. Colloid Interface Sci., 2021, 585: 596.

[69]

Zhuang H, Ma W, Xie J, Liu X, Li B, Jiang Y, Huang S, Chen Z, Zhao B. J. Alloys Compd., 2021, 860: 157915.

[70]

Huo H, Li X, Chen Y, Liang J, Deng S, Gao X, Doyle-Davis K, Li R, Guo X, Shen Y, Nan C-W, Sun X. Energy Storage Mater., 2020, 29: 361.

[71]

Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q. Proc. Natl. Acad. Sci. USA, 2017, 114: 11069.

[72]

Wang T, Zhang R, Wu Y, Zhu G, Hu C, Wen J, Luo W. J. Energy Chem., 2020, 46: 187.

[73]

Li D, Chen L, Wang T, Fan L Z. ACS Appl. Mater. Interfaces, 2018, 10: 7069.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/