Host-Guest Interactions of Cyclopentanocucurbit[6]uril with Alkyl Imidazolium Hydrochlorides

Jie Gao , Ye Meng , Weiwei Zhao , Daofa Jiang , Yanmei Jin , Jun Zheng , Xinan Yang , Peihua Ma

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 674 -678.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 674 -678. DOI: 10.1007/s40242-021-1045-2
Article

Host-Guest Interactions of Cyclopentanocucurbit[6]uril with Alkyl Imidazolium Hydrochlorides

Author information +
History +
PDF

Abstract

The host-guest interactions between cyclopentanocucurbit-[6]uril(CyP6Q[6]) as host and six alkyl imidazolium hydrochloride as guests(g1, g2, g3, g4, g5, and g6) have been studied by various techniques, such as 1H NMR spectroscopy, isothermal titration calorimetry, mass spectrometry, and single-crystal X-ray diffraction analysis. The experimental results showed that CyP6Q[6] formed 1:1 inclusion complexes with each of guests g1–g6. The part of the guest entered the cavity of CyP6Q[6] changes as the alkyl chain increases in length. It can be seen that the length of the alkyl chain plays a key role in determining the mode of host-guest interactions.

Keywords

Host-guest chemistry / Cucurbituril / Alkyl imidazolium salt / Inclusion complex

Cite this article

Download citation ▾
Jie Gao, Ye Meng, Weiwei Zhao, Daofa Jiang, Yanmei Jin, Jun Zheng, Xinan Yang, Peihua Ma. Host-Guest Interactions of Cyclopentanocucurbit[6]uril with Alkyl Imidazolium Hydrochlorides. Chemical Research in Chinese Universities, 2021, 37(3): 674-678 DOI:10.1007/s40242-021-1045-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Freeman W A, Mock W L, Shih N Y. J. Am. Chem. Soc., 1981, 103: 7367.

[2]

Yang J, Shao L, Yuan J, Huang F. Chem. Commun., 201, 52: 12510.

[3]

Li Q, Sun J, Zhou J, Hua B, Shao L, Huang F. Org. Chem. Front., 2018, 5: 1940.

[4]

Li Q, Jie K, Huang F. Angew. Chem. Int. Ed., 2020, 59: 5355.

[5]

Dong S, Zheng B, Wang F, Huang F. Acc. Chem. Res., 2014, 47: 1982.

[6]

Kim K, Selvapalam N, Oh D H. J. Incl. Phenom. Macro., 2004, 50: 31.

[7]

Day A, Arnold A P, Blanch R J, Snushall B. J. Org. Chem., 2001, 66: 8094.

[8]

Day A I, Blanch R J, Arnold A P, Lorenzo S, Lewis G R, Dance I. Angew. Chem., 2002, 41: 275.

[9]

Liu S, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2005, 127: 16798.

[10]

Xue S F, Zhu Q J, Ni X L, Tao Z. Angew. Chem. Int. Ed., 2013, 52: 7252.

[11]

Flinn A, Hough G C, Stoddart J F, Williams D J. Angew. Chem. Int. Ed., 1992, 31: 1475.

[12]

Zhao J H, Kim H J, Oh J H, Kim S Y, Lee J W, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem., 2001, 113: 4363.

[13]

Wu F, Wu L H, Xiao X, Zhang Y Q, Xue S F, Tao Z, Day A I. J. Org. Chem., 2012, 77: 606.

[14]

Wu L H, Ni X L, Wu F, Zhang Y Q, Zhu Q J, Xue S F, Tao Z. J. Mol. Struct., 2009, 920: 183.

[15]

Jon S Y, Selvapalam N, Oh D H, Kang J K, Kim S Y, Jeon Y J, Lee J W, Kim K. J. Am. Chem. Soc., 2003, 125: 10186.

[16]

Isobe H, Sato S, Nakamura E. Org. Lett., 2002, 4: 1287.

[17]

Ni X L, Xiao X, Cong H, Zhu Q J, Xue S F, Tao Z. Acc. Chem. Res., 2014, 47: 1386.

[18]

Nikolova V, Velinova A, Dobrev S, Kircheva N, Angelova S, Dudev T. J. Phys. Chem. A, 2021, 125: 536.

[19]

Prabodh A, Sinn S, Grimm L, Miskolczy Z, Megyesi M, Biczók L, Bräse S, Biedermann F. ChemComm, 2020, 56: 12327.

[20]

Sowa A, Voskuhl J. Int. J. Pharm., 2020, 586: 119595.

[21]

Ai Q, Jin L, Gong Z, Liang F. ACS Omega, 2020, 5: 10581.

[22]

Mao W, Liao Y, Ma D. ChemComm, 2020, 56: 4192.

[23]

Qu Y X, Lin R L, Zhang Y Q, Zhou K Z, Zhou Q D, Zhu Q J, Tao Z, Ma P H, Liu J X, Wei G. Org. Chem. Front., 2017, 4: 1799.

[24]

Sojka M, Fojtu M, Fialova J, Masarik M, Necas M, Marek R. Inorg. Chem., 2019, 58: 10861.

[25]

Feng X, Du H, Chen K, Xiao X, Luo S X, Xue S F, Zhang Y Q, Zhu Q J, Tao Z, Zhang X Y, Wei G. Cryst. Growth Des., 2010, 10: 2901.

[26]

Lei W, Jiang G, Zhou Q, Hou Y, Zhang B, Cheng X, Wang X. Chemphyschem, 2013, 14: 1003.

[27]

Hu Z, Sun D, Han X, Liu S. Chinese J. Org. Chem., 2020, 40(5): 1361.

[28]

Sadhu B, Bandyopadhyay T, Sundararajan M. Inorg. Chem., 201, 55: 598.

[29]

Qu Y X, Zhou K Z, Chen K, Zhang Y Q, Xiao X, Zhou Q D, Tao Z, Ma P H, Wei G. Inorg. Chem., 2018, 57: 7412.

[30]

Cheng R X, Tian F Y, Zhang Y Q, Chen K, Zhu Q J, Tao Z. J. Mater. Sci., 2020, 55: 1.

[31]

Jin Y M, Huang T H, Zhao W W, Yang X N, Meng Y, Ma P H. RSC Adv., 2020, 10: 37369.

[32]

Mei L, Li F Z, Lan J H, Wang C Z, Xu C, Deng H, Wu Q Y, Hu K Q, Wang L, Chai Z F, Chen J, Gibson J K, Shi W Q. Nat. Commun., 2019, 10: 1532.

[33]

Meng Y, Zhao W W, Zheng J, Jiang D F, Gao J, Jin Y M, Ma P H. RSC Adv., 2021, 11: 3470.

[34]

Basiuk V A, Chuiko A A. J. Chromatogr. A, 1990, 521: 29.

[35]

Daghir-Wojtkowiak E, Sylwia S, Buszewski B, Kaliszan R, Markuszewski M J. Anal. Methods, 2013, 6: 1189.

[36]

Vicente F A, Lario L D, Pessoa A, Ventura S P M. Process Biochem., 201, 51: 528.

[37]

Lívia N, Gyetvai G, László K, GézaNagy J. Biochem. Bioph. Meth., 200, 69: 121.

[38]

Song S, Li H, Yang J, Guan S, Zhao S. J. Funct. Mater., 2018, 49: 1033.

[39]

Tong J, Zhang D, Li K, Chen X, Qu Y. J. Chem. Thermodyn., 201, 101: 356.

[40]

Gerasko O A, Samsonenko D G, Fedin V P. Russ. Chem. Rev., 2002, 71: 741.

[41]

Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36: 621.

[42]

Zhang X, Sun T, Ni X L. Org. Chem. Front., 2021, 8: 32.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/