Anti-corrosive Hybrid Electrolytes for Rechargeable Aqueous Zinc Batteries

Jia Wang , Huayu Qiu , Zhiming Zhao , Yuchen Zhang , Jingwen Zhao , Yinglei Ma , Jiedong Li , Min Xing , Guicun Li , Guanglei Cui

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 328 -334.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 328 -334. DOI: 10.1007/s40242-021-1041-6
Article

Anti-corrosive Hybrid Electrolytes for Rechargeable Aqueous Zinc Batteries

Author information +
History +
PDF

Abstract

Aqueous zinc(Zn)-metal cells with cost-effective components and high safety have long been a promising large-scale energy storage system, but Zn anodes are intrinsically unstable with common aqueous electrolytes, causing substantial underutilization of the theoretical capacity. In this work, we report a strictly neutral aqueous Zn electrolyte at a low cost by leveraging the dynamic hydrolysis equilibrium of a dual-salt Zn(Ac)2/NaAc(Ac: CH3COO) formulation. With the pH regulation, the corrosion and hydrogen evolution encountered in Zn anodes can be suppressed significantly. This hybrid aqueous electrolyte not only enables dendrite-free Zn plating/stripping at a nearly 95% Coulombic efficiency[an increase of 24% compared to that of the single-salt 1 mol/L Zn(Ac)2 electrolyte], but also supports the reversible operation of Zn cells paired with either Na3V2(PO4)3 or iodine cathodes—the former delivers a high output voltage of 1.55 V with an energy level of 99.5 W·h/kg(based on the mass of the cathode), and the latter possesses a high specific capacity of 110.9 mA·h/g while yielding long-term cyclability(thousands of cycles). These findings open up a new avenue of modifying practical electrolytes having targeted properties to stabilize multivalent metal anodes.

Keywords

pH regulation / Aqueous Zn-based battery / Na3V2(PO4)3 cathode

Cite this article

Download citation ▾
Jia Wang, Huayu Qiu, Zhiming Zhao, Yuchen Zhang, Jingwen Zhao, Yinglei Ma, Jiedong Li, Min Xing, Guicun Li, Guanglei Cui. Anti-corrosive Hybrid Electrolytes for Rechargeable Aqueous Zinc Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 328-334 DOI:10.1007/s40242-021-1041-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang S, Zhu J, Tian J, Niu Z. Chem. Eur. J., 2019, 25: 14480.

[2]

Zhao Z, Li F, Zhao J, Ding G, Wang J, Du X, Zhou Q, Hou G, Cui G. Adv. Funct. Mater., 2020, 30: 2000347.

[3]

Liang Y, Dong H, Aurbach D, Yao Y. Nat. Energy, 2020, 5: 646.

[4]

Chao D, Zhou W, Xie F, Ye C, Li H, Jaroniec M, Qiao S-Z. Sci. Adv., 2020, 6: 4098.

[5]

Zhang H, Liu X, Li H, Hasa I, Passerini S. Angew. Chem., 2021, 60: 598.

[6]

Powers R, Breiter M J. J. Electrochem. Soc., 1969, 116: 719.

[7]

Xu M, Ivey D, Xie Z, Qu W. J. Power Sources, 2015, 283: 358.

[8]

Samuel R., Alkaline Dry Cell, US5445908A, 1947

[9]

Xu C, Li B, Du H, Kang F. Angew. Chem., 2012, 124: 957.

[10]

Xu C, Chiang S W, Ma J, Kang F J. J. Electrochem. Soc., 2012, 160: A93.

[11]

Wei C, Xu C, Li B, Du H, Kang F J. J. Phys. Chem. Solids, 2012, 73: 1487.

[12]

Shoji T, Hishinuma M, Yamamoto T. J. Appl. Electrochem., 1988, 18: 521.

[13]

Kim D., Lee C., Jeong S., IOP Conf Ser.: Mater. Sci. Eng., 2018, 012001

[14]

Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J. J. Am. Chem. Soc., 201, 138: 12894.

[15]

Wu T-H, Zhang Y, Althouse Z D, Liu N. Mater. Today Nano., 2019, 6: 100032.

[16]

Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura J A, Xu K, Wang C. Nat. Mater., 2018, 17: 543.

[17]

Zhao Z, Zhao J, Hu Z, Li J, Li J, Zhang Y, Wang C, Cui G. Energy Environ. Sci., 2019, 12: 193.

[18]

Naveed A, Yang H, Yang J, Nuli Y, Wang J. Angew. Chem., 2019, 58: 2760.

[19]

Tang Y, Liu C, Zhu H, Xie X, Gao J, Deng C, Han M, Liang S, Zhou J. Energy Storage Mater., 2020, 27: 109.

[20]

Guo W, Cong Z, Guo Z, Chang C, Liang X, Liu Y, Hu W, Pu X. Energy Storage Mater., 2020, 30: 104.

[21]

Zhao J, Zhang J, Yang W, Chen B, Zhao Z, Qiu H, Dong S, Zhou X, Cui G, Chen L. Nano Energy, 2019, 57: 625.

[22]

Ye Z, Cao Z, Chee M, Dong P, Ajayan P M, Shen J, Ye M. Energy Storage Mater., 2020, 32: 290.

[23]

Hou Z, Zhang X, Li X, Zhu Y, Liang J, Qian Y. J. Mater. Chem. A, 2017, 5: 730.

[24]

Ni Q, Jiang H, Sandstrom S, Bai Y, Ren H, Wu X, Guo Q, Yu D, Wu C, Ji X. Adv. Funct. Mater., 2020, 30: 2003511.

[25]

Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura J A, Xu K, Wang C. Nat. Mater., 2018, 17: 543.

[26]

Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, Li F, Chen J. Nat. Commun., 2017, 8: 1.

[27]

Wang L, Zhang Y, Hu H, Shi H-Y, Song Y, Guo D, Liu X-X, Sun X. ACS Appl. Mater. Interfaces., 2019, 11: 42000.

[28]

Henry M, Jolivet J P, Livage J. Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, 1992, Berlin: Springer

[29]

Williams R, Lyman C. J. Am. Chem. Soc, 1932, 54: 1911.

[30]

Wang M, Zhang Y, Muhammed M. Hydrometallurgy, 1997, 45: 53.

[31]

Lide D R. CRC Handbook of Chemistry and Physics, 2004, Boca Raton: CRC Press

[32]

Yan J, Wang J, Liu H, Bakenov Z, Gosselink D, Chen P. J. Power Sources, 2012, 216: 222.

[33]

Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J. J. Am. Chem. Soc., 201, 138: 12894.

[34]

Beverskog B, Puigdomenech I. Corros. Sci., 1997, 39: 107.

[35]

Sun Q. Vib. Spectrosc., 2009, 51: 213.

[36]

Zhang J, Cui C, Wang P-F, Li Q, Chen L, Han F, Jin T, Liu S, Choudhary H, Raghavan S. Energy Environ. Sci., 2020, 13: 2878.

[37]

Zheng J, Tan G, Shan P, Liu T, Hu J, Feng Y, Yang L, Zhang M, Chen Z, Lin Y. Chem, 2018, 4: 2872.

[38]

Han J, Mariani A, Zhang H, Zarrabeitia M, Gao X, Carvalho D V, Varzi A, Passerini S. Energy Storage Mater., 2020, 30: 196.

[39]

Mameng S. H., Bergquist A., Johansson E., Int. Corros. Conf. Ser., 2014, 4077

[40]

Smith A, Burns J, Dahn J. Electrochem. Solid-State Lett., 2010, 13: A177.

[41]

Li G, Yang Z, Jiang Y, Zhang W, Huang Y J. J. Power Sources, 201, 308: 52.

[42]

Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y. Nano Energy, 201, 25: 211.

[43]

Li L, Hoang T K, Zhi J, Han M, Li S, Chen P. ACS Appl. Mater. Interfaces, 2020, 12: 12834.

[44]

Senguttuvan P, Han S D, Kim S, Lipson A L, Tepavcevic S, Fister T T, Bloom I D, Burrell A K, Johnson C. Adv. Energy Mater., 201, 6: 1600826.

[45]

Pan H, Shao Y, Yan P, Cheng Y, Han K S, Nie Z, Wang C, Yang J, Li X, Bhattacharya P. Nat. Energy, 201, 1: 1.

[46]

Chae M S, Heo J W, Lim S-C, Hong S. Inorg. Chem., 201, 55: 3294.

[47]

Dawut G, Lu Y, Miao L, Chen J. Inorg. Chem. Front., 2018, 5: 1391.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/