Hexagonal FeNi2Se4@C Nanoflakes as High Performance Anode Materials for Sodium-ion Batteries

Cui Ma , Licheng Qiu , Jian Bao , Yongning Zhou

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 318 -322.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 318 -322. DOI: 10.1007/s40242-021-1030-9
Article

Hexagonal FeNi2Se4@C Nanoflakes as High Performance Anode Materials for Sodium-ion Batteries

Author information +
History +
PDF

Abstract

Metal selenides have drawn significant attention as promising anode materials for sodium-ion batteries(SIBs) owing to their high electronic conductivity and reversible capacity. Herein, hexagonal FeNi2Se4@C nanoflakes were synthesized via a facile one-step hydrothermal method. They deliver a reversible capacity of 480.7 mA·h/g at 500 mA/g and a high initial Coulombic efficiency of 87.8 %. Furthermore, a discharge capacity of 444.8 mA·h/g can be achieved at 1000 mA/g after 180 cycles. The sodium storage mechanism of FeNi2Se4@C is uncovered. In the discharge process, Fe and Ni nanoparticles are generated and distributed in Na2Se matrix homogeneously. In the charge process, FeNi2Se4 phase is formed reversibly. The reversible phase conversion of FeNi2Se4@C during cycling is responsible for the excellent electrochemical performance and enables FeNi2Se4@C nanoflakes promising anode materials for SIBs.

Keywords

Sodium-ion battery / Metal selenide / Anode / Sodium storage

Cite this article

Download citation ▾
Cui Ma, Licheng Qiu, Jian Bao, Yongning Zhou. Hexagonal FeNi2Se4@C Nanoflakes as High Performance Anode Materials for Sodium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 318-322 DOI:10.1007/s40242-021-1030-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M, Tarascon J. Nature, 2008, 451(7179): 652.

[2]

Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem. Rev., 2014, 114(23): 11636.

[3]

Vaalma C, Buchholz D, Weil M, Passerini S. Nat. Rev. Mater., 2018, 3(4): 1.

[4]

Slater M D, Kim D H, Lee E, Johnson C S. Adv. Funct. Mater., 2013, 23(8): 947.

[5]

Wen Y, He K, Zhu Y J, Han F D, Xu Y H, Matsuda I, Ishii Y, Cumings J, Wang C S. Nat. Commun., 2014, 5(1): 1.

[6]

Qu B H, Ma C Z, Ji G, Xu C H, Xu J, Meng Y S, Wang T H, Lee J Y. Adv. Mater., 2014, 26(23): 3854.

[7]

Zhu S H, Li Q D, Wei Q L, Sun R M, Liu X Q, An Q Y, Mai L Q. ACS Appl. Mater. Interfaces, 2017, 9(1): 311.

[8]

Zhang W L, Zhang F, Ming F W, Alshareef H N. J. Energy Chem., 2019, 1(2): 100012.

[9]

Hou H S, Qiu X Q, Wei W F, Zhang Y, Ji X B. Adv. Energy Mater., 2017, 7(24): 1602898.

[10]

Zhou Y N, Ma J, Hu E Y, Yu X Q, Gu L, Nam K, Chen L Q, Wang Z X, Yang X Q. Nat. Commun., 2014, 5(1): 1.

[11]

Kim Y J, Ha K H, Oh S M, Lee K T. Chem. Eur. J., 2014, 20(38): 11980.

[12]

Jiang Y, Song D Y, Wu J, Wang Z X, Huang S S, Xu Y, Chen Z W, Zhao B, Zhang J J. ACS Nano, 2019, 13(8): 9100.

[13]

Tabassum H, Zhi C X, Hussain T, Qiu T J, Aftab W, Zou R Q. Adv. Energy Mater., 2019, 9(39): 1901778.

[14]

Yang Z J, Wu X Y, Ma C, Hou C C, Chen J S. Chem. Res. Chinese Universities, 2020, 36(1): 91.

[15]

Zhang Z A, Shi X D, Yang X. Electrochim. Acta, 201, 208: 238.

[16]

Niu F E, Yang J, Wang N N, Zhang D P, Fan W L, Yang J, Qian Y T. Adv. Funct. Mater., 2017, 27(23): 1700522.

[17]

Pan Q C, Zhang M, Zhang L X, Li Y H, Li Y, Tan C L, Zheng F H, Huang Y G, Wang H Q, Li Q Y. ACS Nano, 2020, 14(12): 17683.

[18]

Ou X, Liang X H, Zheng F H, Wu P, Pan Q C, Xiong X H, Yang C H, Liu M L. Electrochim. Acta, 2017, 258: 1387.

[19]

Zhao C H, Shen Z, Tu F Z, Hu Z B. J. Mater. Sci., 2020, 55(8): 3495.

[20]

Cho J S, Lee S Y, Kang Y C. Sci. Rep.-UK, 201, 6(1): 1.

[21]

Wang M Y, Guo H N, An C H, Zhang Y, Li W Q, Zhang Z T, Liu G S, Liu Y F, Wang Y J. J. Alloy. Compd., 2020, 820: 153090.

[22]

Zhou Y, Tian R, Duan H N, Wang K F, Guo Y P, Li H, Liu H Z. J. Power Sources, 2018, 399: 223.

[23]

Wang X Y, Zhou Y, Liu M, Chen C, Zhang J. Electrochim. Acta, 2019, 297: 197.

[24]

Zhang K, Hu Z, Liu X, Tao Z L, Chen J. Adv. Mater., 2015, 27(21): 3305.

[25]

Kong F J, Lv L Z, Gu Y, Tao S, Jiang X F, Qian B, Gao L. J. Mater. Sci., 2019, 54(5): 4225.

[26]

Choi J H, Park S K, Kang Y C. Small, 2019, 15(2): 1803043.

[27]

Ali Z, Asif M, Zhang T, Huang X X, Hou Y L. Small, 2019, 15(33): 1901995.

[28]

Qiu L C, Wang Q C, Yue X Y, Qiu Q Q, Li X L, Chen D, Wu X J, Zhou Y N. Electrochem. Commun., 2020, 112: 106684.

[29]

Ali Z, Asif M, Huang X X, Tang T Y, Hou Y L. Adv. Mater., 2018, 30(36): 1802745.

[30]

Oh S H, Cho J S. J. Alloy. Compd., 2019, 806: 1029.

[31]

Umapathi S. Electrochem. Soc. Interface, 2017, 26(4): 94.

[32]

Umapathi S, Masud J, Swesi A T, Nath M. Adv. Sustainable Syst., 2017, 1(10): 1700086.

[33]

Wang T S, Xiao J W, Cao X Y, Fan Y C, Zhang Q F. J. Energy Chem., 2020, 44(1): 8.

[34]

Zhou Y N, Zhang H, Xue M Z, Wu C L, Wu X J, Fu Z W. J. Power Sources, 200, 162(2): 1373.

[35]

Zhang Y, Wang P X, Yin Y Y, Liu N N, Song N, Fan L S, Zhang N Q, Sun K N. Carbon, 2019, 150: 378.

[36]

Yi Z, Lin N, Li T Q, Han Y, Li Y, Qian Y T. Nano Res., 2019, 12(8): 1824.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/