Carbon Dots Derived from Coffee Residue for Sensitive and Selective Detection of Picric Acid and Iron(III) Ions

Siyu Zong , Bolun Wang , Wenyan Ma , Yan Yan , Jiyang Li

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 623 -628.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 623 -628. DOI: 10.1007/s40242-021-1028-3
Article

Carbon Dots Derived from Coffee Residue for Sensitive and Selective Detection of Picric Acid and Iron(III) Ions

Author information +
History +
PDF

Abstract

A facile method was developed to prepare carbon dots(CDs) by pyrolysis and etching of coffee residue. The as-prepared CDs show uniform spherical nanoparticles with an average size of 2.3 nm and exhibit excitation-dependent fluorescence emissions. Moreover, CDs also exhibit strong fluorescence quenching to nitro compounds and metal ions in both water and ethanol solutions, which could act as a platform for dual detection of PA(picric acid) and Fe3+ ions with low detection limits of 0.26 and 0.83 µmol/L, respectively. This work provides a novel method for preparation of environmental-friendly fluorescent CDs and shows their potential applications in photoluminescence sensors.

Keywords

Carbon dot / Coffee residue / Luminescence / Detection

Cite this article

Download citation ▾
Siyu Zong, Bolun Wang, Wenyan Ma, Yan Yan, Jiyang Li. Carbon Dots Derived from Coffee Residue for Sensitive and Selective Detection of Picric Acid and Iron(III) Ions. Chemical Research in Chinese Universities, 2021, 37(3): 623-628 DOI:10.1007/s40242-021-1028-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park C H, Yang H, Lee J, Cho H H, Kim D, Lee D C. Chem. Mater., 2015, 27: 5288.

[2]

Liu H F, Sun Y Q, Li Z H, Yang J, Aryee A A, Qu L B, Du D, Lin Y H. Nanoscale, 2019, 11: 8458.

[3]

Chen L, Zheng J X, Du Q, Yang Y Z, Liu X G, Xu B S. Opt. Mater., 2020, 109: 110346.

[4]

He W, Weng W T, Sun X Y, Pan Y J, Chen X Y, Liu B, Shen J S. ACS Appl. Nano Mater., 2020, 3: 7420.

[5]

Feizpoor S, Habibi Y A, Seifzadeh D, Ghosh S. Sep. Purif. Technol., 2020, 248: 116928.

[6]

Zhong H., Sa R. J., Lv H. W., Yang S. L., Yuan D. Q., Wang X. C., Wang R. H., Adv. Funct. Mater., 2020, 2002654

[7]

Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49: 6726.

[8]

Zhang H C, Huang H, Ming H, Li H T, Zhang L L, Liu Y, Kang Z H. J. Mater. Chem., 2012, 22: 10501.

[9]

Ray S C, Saha A, Jana N R, Sarkar R. J. Phys. Chem. C, 2009, 113: 18546.

[10]

Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22: 24230.

[11]

Cui L, Ren X, Wang J, Sun M. Materials Today Nano, 2020, 12: 100091.

[12]

Sun D, Ban R, Zhang P H, Wu G H, Zhang J R, Zhu J J. Carbon, 2013, 64: 424.

[13]

Liu R H, Huang H, Li H T, Liu Y, Zhong J, Li Y Y, Zhang S, Kang Z H. ACS Catal., 2014, 4: 328.

[14]

Wang Q, Liu X, Zhang L C, Lv Y. Analyst, 2012, 137: 5392.

[15]

Biazar N, Poursalehi R, Delavari H. AIP Conference Proceedings, 2018, 1920: 020033.

[16]

Lin L X, Zhang S W. Chem. Commun., 2012, 48: 10177.

[17]

Liu R L, Wu D Q, Liu S H, Koynov K, Knoll W, Li Q. Angew. Chem. Int. Ed., 2009, 48: 4598.

[18]

Ju B, Wang Y, Zhang Y M, Zhang T, Liu Z H, Li M J, Zhang X A. ACS Appl. Mater. Interfaces, 2018, 10: 13040.

[19]

Zou Y, Yan F Y, Zheng T C, Shi D C, Sun F Z, Yang N, Chen L. Talanta, 2015, 135: 145.

[20]

Yang Z C, Wang M, Yong A M, Wong S Y, Zhang X H, Tan H, Chang A Y, Li X, Wang J. Chem. Commun., 2011, 47: 11615.

[21]

Zhai X Y, Zhang P, Liu C J, Bai T, Li W C, Dai L M, Liu W G. Chem. Commun., 2012, 48: 7955.

[22]

Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48: 8835.

[23]

Roy R, Chen P C, Periasamy A P, Chen Y N, Chang H T. Mater. Today, 2015, 18: 447.

[24]

Wang B L, Zong S Y, Li J Y. Chem. J. Chinese Universities, 2021, 42(1): 299.

[25]

Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B L, Veca M, Xie S Y. J. Am. Chem. Soc., 200, 128: 7756.

[26]

Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126: 12736.

[27]

Xiu Y, Gao Q, Li G, Wang K X, Chen J S. Inorg. Chem., 2010, 49: 5859.

[28]

Qi H J, Teng M, Liu M, Liu S X, Li J, Yu H P, Teng C B, Huang Z H, Liu H, Shao Q, Umar A, Ding T, Gao Q, Guo Z H. J. Colloid Interface Sci., 2019, 539: 332.

[29]

Briscoe J, Marinovic A, Sevilla M, Dunn S, Titirici M. Angew. Chem. Int. Ed., 2015, 54: 4463.

[30]

Abbas A, Tabish T A, Bull S J, Lim T M, Phan A N. Sci. Rep., 2020, 10: 21262.

[31]

Zhang W Y, Jia L H, Guo X F, Yang R, Zhang Y, Zhao Z L. Analyst, 2019, 144: 7421.

[32]

Zhang X Y, Wang H, Ma C H, Niu N, Chen Z J, Liu S X, Li J, Li S J. Mater. Chem. Front., 2018, 2: 1269.

[33]

Du J J, Jiang L, Shao Q, Liu X G, Marks R S, Ma J, Chen X D. Small, 2013, 9: 1467.

[34]

Liu Y S, Zhao Y N, Zhang Y Y. Sens. Actuator B—Chem., 2014, 196: 647.

[35]

Xiao L, Sun H D. Nanoscale Horiz., 2018, 3: 565.

[36]

Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48: 8835.

[37]

Wang B L, Mu Y, Zhang C H, Li J Y. Sens. Actuator B—Chem., 2017, 253: 911.

[38]

Rong M C, Lin L P, Song X H, Zhao T T, Zhong Y X, Yan J W, Wang Y R, Chen X. Anal. Chem., 2015, 87: 1288.

[39]

Liang Z C, Kang M J, Payne G F, Wang X H, Sun R C. ACS Appl. Mater. Interfaces, 201, 8: 17478.

[40]

Wang X, Liu Y L, Zhou Q X, Sheng X Y, Sun Y, Zhou B Y, Zhao J Y, Guo J H. Sci. Total Environ., 2020, 720: 137680.

[41]

Zhang Y B, Chan K F, Wang B, Chiu P W Y, Zhang Z. Sens. Actuator B—Chem., 2018, 271: 12.

[42]

Song Y, Zhu C Z, Song J H, Li H, Du D, Lin Y H. ACS Appl. Mater. Interfaces, 2017, 9: 7399.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/