NDI-induced Topological Conversion of Human Telomeric G-Quadruplexes from Hybrid-2 to Parallel Form

Xueyu Hao , Chunjie Li , Yu Wang , Feng Zhang , Jingwei Hou , Chunqing Kang , Lianxun Gao

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 795 -800.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 795 -800. DOI: 10.1007/s40242-021-1022-9
Article

NDI-induced Topological Conversion of Human Telomeric G-Quadruplexes from Hybrid-2 to Parallel Form

Author information +
History +
PDF

Abstract

G-Quadruplexes(GQs), which are formed by G-rich DNA sequences in human telomeres, have become an attractive target for cancer treatment. The ligands to stabilize the conformation of human telomeric GQs in vivo are particularly important for structure-based ligand design and drug development targeting the noncanonical DNA structure. Here we report the conformational conversion of Tel26 induced by a naphthalene diimide(NDI) ligand in K+ buffer, even at cellular physiological temperature(37 °C) and under mimetic cellular crowding conditions created by Ficoll 70. We provide an insight into the dynamic conversion from initial hybrid-2 GQ topology to final parallel GQ topology. These results are helpful for the design of ligands with GQ conformation regulation.

Keywords

G-Quadruplex / Naphthalene diimide / Topological conversion / Telomeric DNA

Cite this article

Download citation ▾
Xueyu Hao, Chunjie Li, Yu Wang, Feng Zhang, Jingwei Hou, Chunqing Kang, Lianxun Gao. NDI-induced Topological Conversion of Human Telomeric G-Quadruplexes from Hybrid-2 to Parallel Form. Chemical Research in Chinese Universities, 2021, 37(3): 795-800 DOI:10.1007/s40242-021-1022-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Williamson J R, Raghuraman M K, Cech T R. Cell, 1989, 59(5): 871.

[2]

Jerry W S, Woodring E W. Nat. Rev. Genet., 2019, 20(5): 299.

[3]

Zhou X, Xing D. Chem. Soc. Rev., 2012, 41(13): 4643.

[4]

Ruggiero E, Richter S N. Nucleic Acids Res., 2018, 46(7): 3270.

[5]

Ahmed A A, Marchetti C, Ohnmacht S A, Stephen N. Sci. Rep., 2020, 10(1): 12192.

[6]

Ahmed A A, Angell R, Oxenford S, Worthington J, Williams N, Barton N, Fowler T G, OFlynn D E, Sunose M, McConvile M, Vo T, Wilson W D, Karim S A, Morton J P, Neidle S. ACS Med. Chem. Lett., 2020, 11(8): 1634.

[7]

Zhang Z, Dai J, Veliath E, Jones R A, Yang D. Nucleic Acids Res., 2010, 38(3): 1009.

[8]

Dai J, Carver M, Punchihewa C, Jones R A, Yang D. Nucleic Acids Res., 2007, 35(15): 4927.

[9]

Lin C, Wu G, Wang K, Onel B, Sakai S, Shao Y, Yang D. Angew. Chem. Int. Ed., 2018, 57(34): 10888.

[10]

Liu W, Zhong Y, Liu L, Shen C, Zeng W, Wang F, Yang D, Mao Z. Nat. Commun., 2018, 9: 3496.

[11]

Barthwal R, Raje S, Pandav K. Bioorg. Med. Chem., 2020, 28(23): 115761.

[12]

Yu Q, Wang M. Bioorg. Med. Chem., 2020, 28(17): 115641.

[13]

Wang Z, Li M, Chen W, Hsu S, Chang T. Nucleic Acids Res., 201, 44(8): 3958.

[14]

Xu L, Feng S, Zhou X. Chem Commun., 2011, 47(12): 3517.

[15]

Xue Y, Kan Z Y, Wang Q, Yao Y, Liu J, Hao Y H, Tan Z. J. Am. Chem. Soc., 2007, 129(36): 11185.

[16]

Heddi B, Phan A T. J. Am. Chem. Soc., 2011, 133(25): 9824.

[17]

Xue Y, Liu J, Zheng K, Kan Z, Hao Y, Tan Z. Angew. Chem. Int. Ed., 2011, 50(35): 8046.

[18]

Hänsel R, Löhr F, Foldynová-Trantirková S, Bamberg E, Trantírek L, Dötsch V. Nucleic Acids Res., 2011, 39(13): 5768.

[19]

Zuffo M, Guédin A, Leriche E, Doria F, Pirota V, Gabelica V, Mergny J, Freccero M. Nucleic Acids Res., 2018, 46(19): e115.

[20]

Hao X, Wang C, Wang Y, Li C, Hou J, Zhang F, Kang Q, Gao L. Int. J. Biol. Macromol., 2021, 167: 1048.

[21]

Takahashi S, Yamamoto J, Kitamura A, Kinjo M, Sugimoto N. Anal. Chem., 2019, 91(4): 2586.

[22]

Vo T, Oxenford S, Angell R, Marchetti C, Ohnmacht S A, Wilson W D, Neidle S. ACS Med. Chem. Lett., 2020, 11(5): 991.

[23]

Parkinson G N, Cuenca F, Neidle S. J. Mol. Biol., 2008, 381(5): 1145.

[24]

Mpima S, A Ohnmacht S A, Barletta M, Husby J, Pett L C, Gunaratnam M, Hilton S T, Neidle S. Bioorg. Med. Chem., 2013, 21(20): 6162.

[25]

Guo Y, Chen J, Cheng M, Monchaud D, Zhou J, Ju H. Angew. Chem. Int. Ed., 2017, 56(52): 16636.

[26]

Wu J, Meng Z, Lu Y, Shao F. Chem. Eur. J., 2017, 23(56): 13980.

[27]

Mashimo T, Yagi H, Sannohe Y, Rajendran A, Sugiyama H. J. Am. Chem. Soc., 2010, 132(42): 14910.

[28]

Li W, Hou X, Wang P, Xi X, Li M. J. Am. Chem. Soc., 2013, 135(17): 6423.

[29]

Marchand A, Gabeliaca V. Nucleic Acids Res., 201, 44(22): 10999.

[30]

Maleki P, Budhathoki J B, Roy W A, Balci H. Mol. Gen. Genomics, 2017, 292(3): 483.

[31]

Hou X, Fu Y, Wu W, Wang L, Teng F, Xie P, Wang P, Xi X. Nucleic Acids Res., 2017, 45(19): 11401.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/