Efficient Synthesis of p-Hydroxyphenyl Ethanol from Hydrogenation of Methyl p-Hydroxyphenylacetate with CNTs-promoted Cu-Zr Catalyst

Xin Dong , Xi Chen , Zhaohui Zhou

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 745 -750.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 745 -750. DOI: 10.1007/s40242-021-0446-6
Article

Efficient Synthesis of p-Hydroxyphenyl Ethanol from Hydrogenation of Methyl p-Hydroxyphenylacetate with CNTs-promoted Cu-Zr Catalyst

Author information +
History +
PDF

Abstract

Hydrogenation of methyl p-hydroxyphenylacetate has been used for the synthesis of p-hydroxyphenyl ethanol. The reaction was catalyzed by Cu iZr j-x%(mass fraction) carbon nanotubes(CNTs) catalysts. Incorporation of a minor amount of CNTs into Cu iZr j oxide can visibly increase the catalytic activity for the synthesis of p-hydroxyphenyl ethanol. The yield of p-hydroxyphenyl ethanol reaches 94.2% over a co-precipitated catalyst of Cu3Zr1 oxide with 11.0%CNTs. Its catalytic activity shows no obvious decrease after three cycles. This is much better than the CNT-free co-precipitated catalyst with a good yield of 81.1%, Cu3Zr1-0%CNTs.

Keywords

p-Hydroxyphenyl ethanol synthesis / Hydrogenation / Methyl p-hydroxyphenylacetate / Carbon nanotube / Catalyst of Cu iZr j-x%CNTs

Cite this article

Download citation ▾
Xin Dong, Xi Chen, Zhaohui Zhou. Efficient Synthesis of p-Hydroxyphenyl Ethanol from Hydrogenation of Methyl p-Hydroxyphenylacetate with CNTs-promoted Cu-Zr Catalyst. Chemical Research in Chinese Universities, 2021, 37(3): 745-750 DOI:10.1007/s40242-021-0446-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown H C, Narasimhan S, Choi Y M. J. Org. Chem., 1982, 47: 4702.

[2]

Chen P, Zhang H B, Lin G D, Hong Q, Tsai K R. Carbon, 1997, 35: 1495.

[3]

Zhou Q, Reekie T A, Abbassi R H, Indurthi V D, Font J S, Ryan R M, Munoz L, Kassiou M. Bioorg. Med. Chem., 2018, 26: 5852.

[4]

Venkateswarlu S, Panchagnula G K, Subbaraju G V. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 200, 45B: 1063.

[5]

Baraldi P G, Cacciari B, Romagnoli R, Spalluto G, Monopoli A, Ongini E, Varani K, Borea P A. J. Med. Chem., 2002, 45: 115.

[6]

Mellor S B, Nielsen A Z, Burow M, Motawia M S, Jakubauskas D, Moeller B L, Jensen P E. ACS Chem. Biol., 201, 11: 1862.

[7]

Xie J, Yang F, Zhang M, Lam C, Qiao Y, Xiao J, Zhang D, Ge Y, Fu L, Xie D. Bioorg. Med. Chem. Lett., 2017, 27: 131.

[8]

Alvarez Calero J M, Jorge Z D, Massanet G M. Org. Lett., 201, 18: 6344.

[9]

Brenna E, Fronza G, Fuganti C, Pinciroli M. Journal of Agricultural and Food Chemistry, 2003, 51: 4866.

[10]

Pinedo-Rivilla C, Aleu J, Collado I G. J. Mol. Catal. B: Enzym., 2007, 49: 18.

[11]

Daimon E., Wada I., Akada M., Preparation of 4-Hydroxyphenethyl Alcohols, JP2000327610A, 2000

[12]

Yoo S E, Gong Y D, Choi M Y, Seo J S, Yang Y K. Tetrahedron Lett., 2000, 41: 6415.

[13]

Bodnar B S, Vogt P F. J. Org. Chem., 2009, 74: 2598.

[14]

Toyao T, Siddiki S M A H, Morita Y, Kamachi T, Touchy A S, Onodera W, Kon K, Furukawa S, Ariga H, Asakura K, Yoshizawa K, Shimizu K-I. Chem. Eur. J., 2017, 23: 14848.

[15]

Baruah R N. Tetrahedron Lett., 1992, 33: 5417.

[16]

Goswami A, Borthakur N. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 1994, 33B: 495.

[17]

Bai Y, Bi H, Zhuang Y, Liu C, Cai T, Liu X, Zhang X, Liu T, Ma Y. Scientific Reports, 2014, 4: 6640.

[18]

Bianco A, Passacantilli P, Righi G. Synth. Commun., 1988, 18: 1765.

[19]

Guziec F S Jr., Wei D. Tetrahedron Lett., 1992, 33: 7465.

[20]

Notomista E, Scognamiglio R, Troncone L, Donadio G, Pezzella A, Di Donato A, Izzo V. Appl. Environ. Microbiol., 2011, 77: 5428.

[21]

Sysolyatin S V, Kryukov Y A, Malykhin V V, Muradov K K, Chernysheva G A, Aliev O I, Smol’yakova V I, Anishchenko A M, Sidekhmenova A V, Shamanaev A Y, Plotnikov M B. Russ. Chem. Bull., 2015, 64: 2210.

[22]

Zubarovskii V M, Verbovskaya T M, Kiprianov A I. Zh. Obshch. Khim., 1961, 31: 3056.

[23]

Misal Castro L C, Li H, Sortais J B, Darcel C. Chem. Commun., 2012, 48: 10514.

[24]

Fernandez-Pastor I, Fernandez-Hernandez A, Rivas F, Martinez A, Garcia-Granados A, Parra A. Journal of Natural Products, 201, 79: 1737.

[25]

Zhou Y, Gao G, Li H, Qu J. Tetrahedron Lett., 2008, 49: 3260.

[26]

Liang Y N, Oh W D, Li Y M, Hu X. Appl. Catal. A, 2018, 562: 94.

[27]

Iglesias D, Melchionna M. Catalysts, 2019, 9: 128/1.

[28]

Zhang L H, Shi Y M, Zhang L H, Shiju N R, Wang Y. Adv. Sci., 2020, 7: 1902126.

[29]

Udin I, Shaharun M S, Naeem A, Alotaibi M A, Alharthi A I, Bakht M A, Nasir Q. Ceram. Int., 2020, 46: 18446.

[30]

Chen W M, Zhang Y, Zhu Z Y. Chem. Res. Chinese Universities., 2019, 35(1): 133.

[31]

Yan B L, Liu D P, Feng X L, Shao M Z, Zhang Y. Chem. Res. Chinese Universities, 2020, 36(3): 425.

[32]

Yu F Y, Wang K, Wang C, He X X, Liao Y, Zhao S L, Mao H, Li X T, Ma J. Chem. Res. Chinese Universities, 2020, 36(6): 1332.

[33]

Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Szynkowska M I, Maniecki T P. Appl. Catal. B: Environ., 201, 185: 281.

[34]

Gravel E, Namboothiri I N N, Doris E. Synlett, 201, 27: 1179.

[35]

Vanyorek L, Halasi G, Pekker P, Kristaly F, Konya Z. Catal. Lett., 201, 146: 2268.

[36]

Markiton M, Szelwicka A, Boncel S, Jurczyk S, Chrobok A. Appl. Catal. A: Gen., 2018, 556: 81.

[37]

Shi L, Chen Z, Jian Z, Guo F, Gao C. International Journal of Hydrogen Energy, 2019, 44: 19868.

[38]

Łamacz A, Jagódka P, Stawowy M, Matus K. Catalysts, 2020, 10(7): 741.

[39]

Wang G N, Chen L M, Sun Y H, Wu J L, Fu M L, Ye D Q. RSC Adv., 2015, 5: 45320.

[40]

Pouilloux Y, Autin F, Guimon C, Barrault J. Journal of Catalysis, 1998, 176: 215.

[41]

Zhang J, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed., 200, 45: 1113.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/