Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries

Xi Zhou , Yangyang Lai , Xiangjiang Wu , Zhongxue Chen , Faping Zhong , Xinping Ai , Hanxi Yang , Yuliang Cao

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 274 -279.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 274 -279. DOI: 10.1007/s40242-021-0438-6
Article

Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries

Author information +
History +
PDF

Abstract

Sodium-ion batteries(SIBs) are promising for grid-scale energy storage applications due to the natural abundance and low cost of sodium. Among various Na insertion cathode materials, Na0.44MnO2 has attracted the most attention because of its cost effectiveness and structural stability. However, the low initial charge capacity for Na-poor Na0.44MnO2 hinders its practical applications. Herein, we developed a facile chemical presodiated method using sodiated biphenly to transform Na-poor Na0.44MnO2 into Na-rich Na0.66MnO2. After presodiation, the initial charge capacity of Na0.44MnO2 is greatly enhanced from 56.5 mA·h/g to 115.7 mA·h/g at 0.1 C(1 C=121 mA/g) and the excellent cycling stability(the capacity retention of 94.1% over 200 cycles at 2 C) is achieved. This presodiation strategy would open a new avenue for promoting the practical applications of Na-poor cathode materials in sodium-ion batteries.

Keywords

Sodium-ion battery / Na0.44MnO2 / Chemical presodiation / Sodium biphenyl / Initial charge capacity

Cite this article

Download citation ▾
Xi Zhou, Yangyang Lai, Xiangjiang Wu, Zhongxue Chen, Faping Zhong, Xinping Ai, Hanxi Yang, Yuliang Cao. Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 274-279 DOI:10.1007/s40242-021-0438-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao Y L, Xiao L F, Wang W, Choi D, Nie Z, Yu J G, Saraf L V, Yang Z G, Liu J. Adv. Mater., 2011, 23: 3155.

[2]

Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S. Nat. Mater., 2012, 11: 512.

[3]

Yu C Y, Park J S, Jung H G, Chung K Y, Aurbach D, Sun Y K, Myung S T. Energy Environ. Sci., 2015, 8: 2019.

[4]

Xi K Y, Chu S F, Zhang X Y, Zhang X P, Zhang H Y, Xu H, Bian J J, Fang T C, Guo S H, Liu P, Chen M W, Zhou H S. Nano Energy, 2019, 67: 104215.

[5]

Hosono E, Saito T, Hoshino J, Okubo M, Saito Y, Nishio-Hamane D, Kudo T, Zhou H S. J. Power Sources, 2012, 217: 43.

[6]

Berthelot R, Carlier D, Delmas C. Nat. Mater., 2010, 10: 74.

[7]

Casas-Cabanas M, Roddatis V V, Saurel D, Kubiak P, Carretero-González J, Palomares V, Serras P, Rojo T. J. Mater. Chem., 2012, 22: 17421.

[8]

Wu X H, Wu W W, Liu C, Li S S, Liao S, Cai J C. Chin. J. Chem., 2010, 28: 2394.

[9]

Le S N, Eng H W, Navrotsky A. J. Solid State Chem., 200, 179: 3731.

[10]

Matsuda T, Takachi M, Moritomo Y. Chem. Commun., 2013, 49: 2750.

[11]

You Y, Wu X L, Yin Y X, Guo Y G. Energy Environ. Sci., 2014, 7: 1643.

[12]

Fang Y J, Zhang J X, Zhong F P, Feng X M, Chen W H, Ai X P, Yang H X, Cao Y L. CCS Chemistry, 2020, 2: 2428.

[13]

Doeff M M, Peng M Y, Ma Y P, L C, De J. J. Electrochem. Soc., 1994, 141: L145.

[14]

Zhan P, Wang S, Yuan Y, Jiao K L, Jiao S Q. J. Electrochem. Soc., 2015, 162: A1028.

[15]

Wang Y S, Mu L Q, Liu J, Yang Z Z, Yu X Q, Gu L, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J. Adv. Energy Mater., 2015, 5: 1501005.

[16]

Fu B, Zhou X, Wang Y P. J. Power Sources, 201, 310: 102.

[17]

Dai K H, Mao J, Song X Y, Battaglia V, Liu G. J. Power Sources., 2015, 285: 161.

[18]

Park J H, Park K, Kim R H, Yun D J, Park S Y, Han D, Lee S S, Park J H. J. Mater. Chem. A, 2015, 3: 10730.

[19]

Wang Y S, Liu J, Lee B, Qiao R M, Yang Z Z, Xu S Y, Yu X Q, Gu L, Hu Y S, Yang W L, Kang K, Li H, Yang X Q, Chen L Q, Huang X J. Nat. Commun., 2015, 6: 6401.

[20]

Zhou Y T, Sun X, Zou B K, Liao J Y, Wen Z Y, Chen C H. Electrochim. Acta, 201, 213: 496.

[21]

Ju X K, Huang H, Zheng H F, Deng P, Li S Y, Qu B H, Wang T H. J. Power Sources, 2018, 395: 395.

[22]

Shi W J, Yan Y W, Chi C, Ma X T, Zhang D, Xu S D, Chen L, Wang X M, Liu S B. J. Power Sources, 2019, 427: 129.

[23]

Chen Z X, Yuan T C, Pu X J, Yang H X, Ai X P, Xia Y Y, Cao Y L. ACS Appl. Mater. Interfaces, 2018, 10: 11689.

[24]

Choi J U, Jo J H, Jo C H, Cho M K, Park Y J, Jin Y C, Yashiro H, Myung S T. J. Mater. Chem. A, 2019, 7: 13522.

[25]

Shen Y F, Zhang J M, Pu Y F, Wang H, Wang B, Qian J F, Cao Y L, Zhong F P, Ai X P, Yang H X. ACS Energy Letters, 2019, 4: 1717.

[26]

Shen Y F, Qian J F, Yang H X, Zhong F, Ai X P. Small, 2020, 16: e1907602.

[27]

Liu X X, Tan Y C, Liu T C, Wang W Y, Li C H, Lu J, Sun Y M. Adv. Funct. Mater., 2019, 29: 1903795.

[28]

Liu M C, Zhang J M, Guo S, Wang B, Shen Y F, Ai X P, Yang H X, Qian J F. ACS Appl. Mater. Interfaces, 2020, 12: 17620.

[29]

Li H, Liu S Y, Wang H M, Wang B, Sheng P, Xu L, Zhao G Y, Bai H T, Chen X, Cao Y L, Chen Z X. Acta Phys.-Chim. Sin., 2019, 35: 1357.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/