PDF
Abstract
Nonconventional luminophores without large conjugated structures are attracting increasing attention for their unique aggregation-induced emission(AIE) properties and promising applications in optoelectronic and biomedical areas. The emission mechanism, however, remains elusive, which makes rational molecular design difficult. Recently, we proposed the clustering-triggered emission(CTE) mechanism to illustrate the emission. The clustering of electron-rich nonconventional chromophores with π and/or n electrons and consequent electron cloud overlap is crucial to the luminescence. Herein, based on the CTE mechanism, nonaromatic polymers containing multitype heteroatoms(i.e., O, N, and S) and involving amide(CONH) and sulfide(-S-) groups were designed and synthesized through facile thiol-ene click chemistry. The resulting polymers demonstrated typical concentration-enhanced emission, AIE phenomenon, and excitation-dependent emission. Notably, compared with polysulfides, these polymers exhibited much higher solid-state emission efficiencies, because of the incorporation of amide units, which contributed to the formation of emissive clusters with highly rigidified conformations through effective hydrogen bonding. Furthermore, distinct persistent cryogenic phosphorescence or even room temperature phosphorescence(RTP) was noticed. These photophysical behaviors can well be rationalized in terms of the CTE mechanism, indicating the feasibility of rational molecular design and luminescence regulation.
Keywords
Clustering-triggered emission
/
Aggregation-induced emission
/
Nonaromatic polymer
/
Heteroatom
/
Phosphorescence
Cite this article
Download citation ▾
Fahmeeda Kausar, Tianjia Yang, Zihao Zhao, Yongming Zhang, Wang Zhang Yuan.
Clustering-triggered Emission of Nonaromatic Polymers with Multitype Heteroatoms and Effective Hydrogen Bonding.
Chemical Research in Chinese Universities, 2021, 37(1): 177-182 DOI:10.1007/s40242-021-0414-1
| [1] |
Luo J, Xie Z, Lam J W Y, Cheng L, Tang B Z, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D. Chem. Commun., 2001, 18: 1740.
|
| [2] |
Yang J, Chi Z, Zhu W, Tang B Z, Li Z. Sci. China. Chem., 2019, 62: 1090.
|
| [3] |
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115: 11718.
|
| [4] |
Zhang R, Duan Y, Liu B. Nanoscale, 2019, 11: 19241.
|
| [5] |
Wu H, Chen Z, Chi W, Bindra A K, Gu L, Qian C, Wu B, Yue B, Liu G, Yang G, Zhu L, Zhao Y. Angew. Chem. Int. Ed., 2019, 58: 11419.
|
| [6] |
Feng H-T, Li Y, Duan X, Wang X, Qi C, Lam J W Y, Ding D, Tang B Z. J. Am. Chem. Soc., 2020, 142: 15966.
|
| [7] |
Han M, Chen Y, Xie Y, Zhang F, Li X, Huang A, Fan Y, Fan Y, Gong Y, Peng Q, Li Q, Ma D, Li Z. Cell Rep. Phys. Sci., 2020, 1: 100252.
|
| [8] |
Lyu G, Kendall J, Meazzini I, Preis E, Bayseç S, Scherf U, Clément S, Evans R C. ACS Appl. Polym. Mater., 2019, 1: 3039.
|
| [9] |
Wu H, Luo J, Xu Z, Wang Z, Ma D, Qin A, Tang B Z. Chem. Res. Chinese Universities, 2020, 36(1): 61.
|
| [10] |
Ma L, Li C, Yan Q, Wang S, Miao W, Cao D. Chin. Chem. Lett., 2020, 31: 361.
|
| [11] |
Tomalia D A, Klajnert-Maculewicz B, Johnson K A M, Brinkman H F, Janaszewska A, Hedstrand D M. Prog. Polym. Sci., 2019, 90: 35.
|
| [12] |
Wang D, Wang X, Xu C, Ma X. Sci. China Chem., 2019, 62: 430.
|
| [13] |
Shang C, Zhao Y, Long J, Ji Y, Wang H. J. Mater. Chem. C, 2020, 8: 1017.
|
| [14] |
Sun M, Hong C Y, Pan C Y. J. Am. Chem. Soc., 2012, 134: 20581.
|
| [15] |
Ye R, Liu Y, Zhang H, Su H, Zhang Y, Xu L, Hu R, Kwok R T K, Wong K S, Lam J W Y, Goddard W A, Tang B Z. Polym. Chem., 2017, 8: 1722.
|
| [16] |
Feng Y, Bai T, Yan H, Ding F, Bai L, Feng W. Macromolecules, 2019, 52: 3075.
|
| [17] |
Shang C, Wei N, Zhuo H, Shao Y, Zhang Q, Zhang Z, Wang H. J. Mater. Chem. C, 2017, 5: 8082.
|
| [18] |
Zhang M, Chen J, Zhang M, Li R, Wang M, Qiu L, Yuan M, Feng X, Xing Z, Hu J, Wu G. ACS Appl. Mater. Interfaces, 2020, 12: 49258.
|
| [19] |
Wang Y, Bin X, Chen X, Zheng S, Zhang Y, Yuan W Z. Macromol. Rapid Comm., 2018, 39: 1800528.
|
| [20] |
Guan R, Dong B, Xu C, Zhang H, Cao D, Lin W. Chem. Commun., 2020, 56: 4424.
|
| [21] |
Zhou Q, Wang Z, Dou X, Wang Y, Liu S, Zhang Y, Yuan W Z. Mater. Chem. Front., 2019, 3: 257.
|
| [22] |
Fang M, Yang J, Xiang X, Xie Y, Dong Y, Peng Q, Li Q, Li Z. Mater. Chem. Front., 2018, 2: 2124.
|
| [23] |
Li Y, Ao W, Jin H, Cao L. Prog. Chem., 2019, 31: 121.
|
| [24] |
Yuan W Z, Zhang Y. J. Polym. Sci. Polym. Chem., 2017, 55: 560.
|
| [25] |
Tao S, Zhu S, Feng T, Zheng C, Yang B. Angew. Chem. Int. Ed., 2020, 59: 9826.
|
| [26] |
Wang D, Imae T. J. Am. Chem. Soc., 2004, 126: 13204.
|
| [27] |
Lee W I, Bae Y, Bard A J. J. Am. Chem. Soc., 2004, 126: 8358.
|
| [28] |
Bai L, Yan H, Bai T, Guo L, Lu T, Zhao Y, Li C. Biomacromolecules, 2020, 21: 3724.
|
| [29] |
Gong Y, Tan Y, Mei J, Zhang Y, Yuan W, Zhang Y, Sun J, Tang B Z. Sci. China Chem., 2013, 56: 1178.
|
| [30] |
Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan W Z, Zhang Y. Small, 201, 12: 6586.
|
| [31] |
Zheng S, Zhu T, Wang Y, Yang T, Yuan W Z. Angew. Chem. Int. Ed., 2020, 59: 10018.
|
| [32] |
Wang S, Wu D, Yang S, Lin Z, Ling Q. Mater. Chem. Front., 2020, 4: 1198.
|
| [33] |
Du Y, Bai T, Ding F, Yan H, Zhao Y, Feng W. Polym. J., 2019, 51: 869.
|
| [34] |
Huang W, Yan H, Niu S, Du Y, Yuan L. J. Polym. Sci. Polym. Chem., 2017, 55: 3690.
|
| [35] |
Zhao E, Lam J W Y, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang B Z. Macromolecules, 2015, 48: 64.
|
| [36] |
Hu C, Ru Y, Guo Z, Liu Z, Song J, Song W, Zhang X, Qiao J. J. Mater. Chem. C, 2019, 7: 387.
|
| [37] |
Zhou X, Luo W, Nie H, Xu L, Hu R, Zhao Z, Qin A, Tang B Z. J. Mater. Chem. C, 2017, 5: 4775.
|
| [38] |
Zhou Q, Yang T, Zhong Z, Kausar F, Wang Z, Zhang Y, Yuan W Z. Chem. Sci., 2020, 11: 2926.
|
| [39] |
Wang Y, Tang S, Wen Y, Zheng S, Yang B, Yuan W Z. Mater. Horiz., 2020, 7: 2105.
|
| [40] |
Yan J, Zheng B, Pan D, Yang R, Xu Y, Wang L, Yang M. Polym. Chem., 2015, 6: 6133.
|
| [41] |
Lai Y., Zhao Z., Zheng S., Yuan W. Z., Acta Chim. Sinica, 2021, 79, DOI: https://doi.org/10.6023/A20080368
|
| [42] |
Hu C, Ru Y, Guo Z, Liu Z, Song J, Song W, Zhang X, Qiao J. J. Mater. Chem. C, 2019, 7: 387.
|
| [43] |
Zhang H, Zhao Z, McGonigal P R, Ye R, Liu S, Lam J W Y, Kwok R T K, Yuan W Z, Xie J, Rogach A L, Tang B Z. Mater. Today, 2020, 32: 275.
|
| [44] |
Hu C, Guo Z, Ru Y, Song W, Liu Z, Zhang X, Qiao J. Macromol. Rapid. Comm., 2018, 39: 1800035.
|
| [45] |
Chen X, Luo W, Ma H, Peng Q, Yuan W Z, Zhang Y. Sci. China Chem., 2018, 61: 351.
|
| [46] |
Zhao Z, Chen X, Wang Q, Yang T, Zhang Y, Yuan W Z. Polym. Chem., 2019, 10: 3639.
|
| [47] |
Nguyen P H, Spoljaric S, Seppälä J. Polymer, 2018, 153: 183.
|
| [48] |
Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004.
|
| [49] |
Keizer J. J. Am. Chem. Soc., 1983, 105: 1494.
|
| [50] |
Griebel J J, Glass R S, Char K, Pyun J. Prog. Polym. Sci., 201, 58: 90.
|