A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced Emission and Counterion Displacement

Quan Pan , Feiyan Ma , Xinqing Pu , Manyi Zhao , Qiling Wu , Na Zhao , Jun Yang , Ben Zhong Tang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 166 -170.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 166 -170. DOI: 10.1007/s40242-021-0400-7
Article

A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced Emission and Counterion Displacement

Author information +
History +
PDF

Abstract

In this work, a fluorescent probe(TPEBe-I) was developed for adenosine triphosphate(ATP) detection based on the synergetic effect of aggregation-induced emission and counterion displacement. TPEBe-I gave weak emission in aqueous solution due to the heavy-atom effect of counter iodide ion. However, upon the addition of ATP, the new aggregate complex(TPEBe-ATP) was formed between the cationic unit of TPEBe-I and ATP through electrostatic interactions, which not only restricted the intramolecular motion of luminogen but also eliminated the quenching effect of iodide ion. As a result, the fluorescent light-up detection for ATP was successfully achieved. Moreover, TPEBe-I exhibited high selectivity towards ATP and showed a wide linear detection region towards the logarithm of ATP concentration(5—600 µmol/L) with a detection limit of 1.0 µmol/L, enabling TPEBe-I as a promising probe for ATP quantitative analysis.

Keywords

Fluorescent probe / Adenosine triphosphate / Aggregation-induced emission / Counterion displacement

Cite this article

Download citation ▾
Quan Pan, Feiyan Ma, Xinqing Pu, Manyi Zhao, Qiling Wu, Na Zhao, Jun Yang, Ben Zhong Tang. A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced Emission and Counterion Displacement. Chemical Research in Chinese Universities, 2021, 37(1): 166-170 DOI:10.1007/s40242-021-0400-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Silva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E. Chem. Rev., 1997, 97: 1515.

[2]

Martinez-Manez R, Sancenon F. Chem. Rev., 2003, 103: 4419.

[3]

Santos-Figueroa L E, Moragues M E, Climent E, Agostini A, Martinez-Manez R, Sancenon F. Chem. Soc. Rev., 2013, 42: 3489.

[4]

Yue Y, Huo F, Cheng F, Zhu X, Mafireyi T, Strongin R M, Yin C. Chem. Soc. Rev., 2019, 48: 4415.

[5]

Swierczewska M, Liu G, Lee S, Chen X. Chem. Soc. Rev., 2012, 41: 2641.

[6]

Du J, Hu M, Fan J, Peng X. Chem. Soc. Rev., 2012, 41: 4511.

[7]

Neelakandan P P, Hariharan M, Ramaiah D. J. Am. Chem. Soc., 200, 128: 11334.

[8]

Wu Y, Wen J, Li H J, Sun S G, Xu Y Q. Chin. Chem. Lett., 2017, 28: 1916.

[9]

Xu Z, Singh N J, Lim J, Pan J, Kim H N, Park S, Kim K S, Yoon J. J. Am. Chem. Soc., 2009, 131: 15528.

[10]

Jose D A, Mishra S, Ghosh A, Shrivastav A, Mishra S K, Das A. Org. Lett., 2007, 9: 1979.

[11]

Moro A J, Schmidt J, Doussineau T, Lapresta-Fernandéz A, Wegener J, Mohr G J. Chem. Commun., 2011, 47: 6066.

[12]

Lipscomb W N, Strater N. Chem. Rev., 199, 96: 2375.

[13]

Xie L, Zhang M, Zhou W, Wu Z G, Ding J G, Chen LY, Xu T. Traffic, 200, 7: 429.

[14]

Gouring A V, Llaudet E, Dale N, Spyer M. Nature, 2005, 436: 108.

[15]

Bush K T, Keller S H, Nigam S K. J. Clin. InVest., 2000, 106: 621.

[16]

Harkness R A, Saugstad O D. Scand. J. Clin. Lab. InVest., 1997, 57: 655.

[17]

Luo J., Xie Z., Lam J. W. Y., Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y., Zhu D., Tang B. Z., Chem. Commun., 2001, 1740

[18]

Hong Y, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2011, 40: 5361.

[19]

Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115: 11718.

[20]

Yang J, Chi Z, Zhu W, Tang B Z, Li Z. Sci. Chin. Chem., 2019, 62: 1090.

[21]

Kwok R T K, Leung C W T, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2015, 44: 4228.

[22]

Gao M, Tang B Z. ACS Sens., 2017, 2: 1382.

[23]

La D D, Bhosale S V, Jone L A, Bhosale S V. ACS Appl. Mater. Interfaces, 2018, 10: 12189.

[24]

Wang D, Tang B Z. Acc. Chem. Res., 2019, 52: 2559.

[25]

Zhang G, Hu F, Zhang D. Langmuir, 2015, 31: 4593.

[26]

Ma L, Xu B, Liu L, Tian W. Chem. Res. Chinese Universities, 2018, 34(3): 363.

[27]

Chua M H, Shah K W, Zhou H, Xu J. Molecules, 2019, 24: 2711.

[28]

Singh V R, Malegaonkar J N, Bhosale S V, Prabhat K S. Org. Biomol. Chem., 2020, 18: 8414.

[29]

Zhao M, Wang M, Liu H, Liu D, Zhang G, Zhang D, Zhu D. Langmuir, 2009, 25: 676.

[30]

Tao H, He L, Cheng G, Cao Q Y. Dyes Pig., 2019, 166: 233.

[31]

Ding A X, Shi Y D, Zhang K X, Sun W, Tan Z L, Lu Z L, He L. Sens. Actuators B, 2018, 225: 440.

[32]

Noguchi T, Shiraki T, Dawn A, Tsuchiya Y, Lien L T N, Yamamoto T, Shinkai S. Chem. Commun., 2012, 48: 8090.

[33]

Li H, Guo Z, Xie W, Sun W, Ji S, Tian J, Lv L. Anal. Biochem., 2019, 578: 60.

[34]

Zhao N, Yang Z, Lam J W Y, Sung H H Y, Xie N, Chen S, Su H, Gao M, Williams I D, Wong K S, Tang B Z. Chem. Commun., 2012, 48: 8637.

[35]

Zhao N, Lam J W Y, Sung H H Y, Su H M, Williams I D, Wong K S, Tang B Z. Chem.-Eur. J., 2014, 20: 133.

[36]

Zhang R X, Li P F, Zhang W J, Li N, Zhao N. J. Mater. Chem. C, 201, 4: 10479.

[37]

Hong Y., Lam J. W. Y., Tang B. Z., Chem. Commun., 2009, 4332

[38]

Li S, Gao M, Wang S, Hu R, Zhao Z, Qin A, Tang B Z. Chem. Commun., 2017, 53: 4795.

[39]

He X, Li Z, Jia X, Wang K, Yin J. Talanta, 2013, 111: 105.

[40]

Liu G, Li J, Feng D-Q, Zhu J-J, Wang W. Anal. Chem., 2017, 89: 1002.

[41]

Geng L-Y, Zhao Y, Kamya E, Guo J-T, Sun B, Feng Y-K, Zhu M-F, Ren X-K. J. Mater. Chem. C, 2019, 7: 2640.

[42]

Ding A-X, Shi Y-D, Zhang K-M, Sun W, Tan Z-L, Lu Z-L, He L. Sensor Actuator: Chem., 2018, 255: 440.

[43]

Jin X, Wu X, Wang B, Xie P, He Y, Zhou H, Yan B, Yang J, Chen W, Zhang X. Sensor Actuator: Chem., 2018, 261: 127.

[44]

Sahoo J, Jaiswar S, Jena H S, Subramanian P S. ChemistrySelect, 2020, 42: 12878.

[45]

Huang B, Geng Z, Yan S, Li Z, Cai J, Wang Z. Anal. Chem., 2017, 89: 8816.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/