Positive Luminescent Sensor for Aerobic Conditions Based on Polyhedral Oligomeric Silsesquioxane Networks

Kazumasa Suenaga , Kazuo Tanaka , Yoshiki Chujo

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 162 -165.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 162 -165. DOI: 10.1007/s40242-021-0398-x
Article

Positive Luminescent Sensor for Aerobic Conditions Based on Polyhedral Oligomeric Silsesquioxane Networks

Author information +
History +
PDF

Abstract

There are numerous numbers of hypoxia-selective luminescent probes based on oxygen quenching of phosphorescence. We show a unique design for luminescent probes to detect hyperoxia utilizing hybrid networks consisting of aggregation-induced emission(AIE)-active dyes and disulfide linkers. At the initial state, emission from the AIE-active dyes is inducible by suppressing energy-consumable intramolecular motions in the hybrid matrices, while the decrease in intensity was detected by releasing molecular motions corresponded to bond scission at the disulfide linkers. Particularly, it was shown that this process selectively proceeds in hypoxia. As a result, positive luminescent signals were obtained in hyperoxia.

Keywords

Polyhedral oligomeric silsesquioxane(POSS) / Network polymer / Hypoxia / Luminescent probe

Cite this article

Download citation ▾
Kazumasa Suenaga, Kazuo Tanaka, Yoshiki Chujo. Positive Luminescent Sensor for Aerobic Conditions Based on Polyhedral Oligomeric Silsesquioxane Networks. Chemical Research in Chinese Universities, 2021, 37(1): 162-165 DOI:10.1007/s40242-021-0398-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yoshihara T, Hirakawa Y, Hosaka M, Nangaku M, Tobita S. J. Photochem. Photobiol. C, 2017, 30: 71.

[2]

Papkovsky D B, Dimitriev R I. Cell. Mol. Life Sci., 2018, 75(16): 2963.

[3]

Roussakis E, Li Z, Nichols A J, Evans C L. Angew. Chem. Int. Ed., 2015, 54(29): 8340.

[4]

Jiho Y, Kurihara R, Kawai K, Yamada H, Uto Y, Tanabe K. Bioorg. Med. Chem. Lett., 2019, 29(11): 1304.

[5]

Hara D, Umehara Y, Son A, Asahi W, Misu S, Kurihara R, Kondo T, Tanabe K. ChemBioChem, 2018, 19(9): 956.

[6]

Zhang G, Palmer G M, Dewhirst M W, Fraser C L. Nat. Mater., 2009, 8(9): 747.

[7]

Daly M L, Kerr C, DeRosa C A, Fraser C L. ACS Appl. Mater. Interfaces, 2017, 9(37): 32008.

[8]

Yoshii R, Suenaga K, Tanaka K, Chujo Y. Chem. Eur. J., 2015, 21(19): 7231.

[9]

Tanaka K, Nishino K, Ito S, Yamane H, Suenaga K, Hashimoto K, Chujo Y. Faraday Discuss, 2017, 196: 31.

[10]

Suenaga K, Tanaka K, Chujo Y. Chem. Eur. J., 2017, 23(6): 1409.

[11]

Suenaga K, Yoshii R, Tanaka K, Chujo Y. Macromol. Chem. Phys., 201, 217(3): 414.

[12]

Li Z, Hu J, Yang L, Zhang X, Liu X, Wang Z, Li Y. Nanoscale, 2020, 12(21): 11395.

[13]

Zhang J, Luo Z, Wang W, Yang Y, Li D, Ma Y. React. Funct. Polym., 2019, 140: 103.

[14]

Che F, Lin F, Zhang Q, Cai R, Wu Y, Ma X. Macromol. Rapid Commun., 2019, 40(17): 1900101.

[15]

Chi H, Wang M, Xiao Y, Wang F, Joshy K S. Molecules, 2018, 23(10): 2481.

[16]

Yusa S, Ohno S, Honda T, Imoto H, Nakao Y, Naka K, Nakamura Y, Fujii S. RSC Adv., 201, 6(77): 73006.

[17]

Tanaka K, Chujo Y. J. Mater. Chem., 2012, 22(5): 1733.

[18]

Tanaka K, Chujo Y. Polym. J., 2013, 45(3): 247.

[19]

Tanaka K, Chujo Y. Bull. Chem. Soc. Jpn., 2013, 86(11): 1231.

[20]

Gon M, Tanaka K, Chujo Y. Polym. J., 2018, 50(1): 109.

[21]

Chujo Y, Tanaka K. Bull. Chem. Soc. Jpn., 2015, 88(5): 633.

[22]

Tanaka K, Inafuku K, Adachi S, Chujo Y. Macromolecules, 2009, 42(10): 3489.

[23]

Tanaka K, Okada H, Jeon J-H, Inafuku K, Ohashi W, Chujo Y. Bioorg. Med. Chem., 2013, 21(10): 2678.

[24]

Tanaka K, Inafuku K, Chujo Y. Chem. Commun., 2010, 46(24): 4378.

[25]

Tanaka K, Inafuku K, Naka K, Chujo Y. Org. Biomol. Chem., 2008, 6(21): 3899.

[26]

Kakuta T, Jeon J-H, Narikiyo H, Tanaka K, Chujo Y. Bioorg. Med. Chem., 2017, 25(4): 1389.

[27]

Jeon J-H, Kakuta T, Tanaka K, Chujo Y. Bioorg. Med. Chem. Lett., 2015, 25(10): 2050.

[28]

Jeon J-H, Tanaka K, Chujo Y. Org. Biomol. Chem., 2014, 12(33): 6500.

[29]

Tanaka K, Murakami M, Jeon J-H, Chujo Y. Org. Biomol. Chem., 2012, 10(1): 90.

[30]

Tanaka K, Jeon J-H, Inafuku K, Chujo Y. Bioorg. Med. Chem., 2012, 20(2): 915.

[31]

Tanaka K, Inafuku K, Chujo Y. Bioorg. Med. Chem., 2008, 16(23): 10029.

[32]

Tanaka K, Ohashi W, Kitamura N, Chujo Y. Bull. Chem. Soc. Jpn., 2011, 84(6): 612.

[33]

Bagiyan G A, Koroleva I K, Soroka N V, Ufimtsev A V. Russ. Chem. Bull. Int. Ed., 2003, 52(5): 1135.

[34]

Tanaka K, Kitamura N, Chujo Y. Bioorg. Med. Chem., 2012, 20(1): 96.

[35]

Tanaka K, Kitamura N, Takahashi Y, Chujo Y. Bioorg. Med. Chem., 2009, 17(11): 3818.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/