Recent Advances of Pure Organic Room Temperature Phosphorescence Materials for Bioimaging Applications

Yazhen Hou , Guoyu Jiang , Jianye Gong , Ren Sha , Jianguo Wang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 73 -82.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 73 -82. DOI: 10.1007/s40242-021-0396-z
Review

Recent Advances of Pure Organic Room Temperature Phosphorescence Materials for Bioimaging Applications

Author information +
History +
PDF

Abstract

Bioimaging, as a powerful and helpful tool, which allows people to investigate deeply within living organisms, has contributed a lot for both clinical theranostics and scientific research. Pure organic room temperature phosphorescence(RTP) materials with the unique features of ultralong luminescence lifetime and large Stokes shift, can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality, and thus are attracting increasing attention. This review classifies pure organic RTP materials into three categories, including small molecule RTP materials, polymer RTP materials and supramolecular RTP materials, and summarizes the recent advances of pure organic RTP materials for bioimaging applications.

Keywords

Bioimaging application / Pure organic room temperature phosphorescence / Phosphorescence lifetime / Time-resolved luminescence imaging / In vivo imaging

Cite this article

Download citation ▾
Yazhen Hou, Guoyu Jiang, Jianye Gong, Ren Sha, Jianguo Wang. Recent Advances of Pure Organic Room Temperature Phosphorescence Materials for Bioimaging Applications. Chemical Research in Chinese Universities, 2021, 37(1): 73-82 DOI:10.1007/s40242-021-0396-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kuno S, Akeno H, Ohtani H, Yuasa H. Phys. Chem. Chem. Phys., 2015, 17(24): 15989.

[2]

Smith B R, Gambhir S S. Chem. Rev., 2017, 117(3): 901.

[3]

Xu S, Chen R F, Zheng C, Huang W. Adv. Mater., 201, 28(45): 9920.

[4]

Hirata S, Totani K, Zhang J X, Yamashita T, Kaji H, Marder S R, Watanabe T, Adachi C. Adv. Funct. Mater., 2013, 23(27): 3386.

[5]

Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K, Li Z. Nat. Commun., 2018, 9(1): 840.

[6]

Xu J J, Takai A, Kobayashi Y, Takeuchi M. Chem. Commun., 2013, 49(76): 8447.

[7]

You Y Q, Huang K W, Liu X J, Pan X, Zhi J H, He Q J, Shi H F, An Z F, Ma X, Huang W. Small, 2020, 16(8): 1906733.

[8]

Ma X, Xu C, Wang J, Tian H. Angew. Chem. Int. Ed., 2018, 57(34): 10854.

[9]

Tao Y, Chen R, Li H, Yuan J, Wan Y, Jiang H, Chen C, Si Y, Zheng C, Yang B, Xing G, Huang W. Adv. Mater., 2018, 30(44): 1803856.

[10]

Wang S, Yuan W Z, Zhang Y. ACS Symp. Ser., 201, 2: 1.

[11]

Xiao L, Wu Y S, Chen J W, Yu Z Y, Liu Y P, Yao J N, Fu H B. J. Phys. Chem. A, 2017, 121(45): 8652.

[12]

Yang X G, Yan D P. Chem. Sci., 201, 7(7): 4519.

[13]

Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6091.

[14]

Zhi J H, Zhou Q, Shi H F, An Z F, Huang W. Chem. Aslan. J., 2020, 15(7): 947.

[15]

Mieno H, Kabe R, Adachi C. Commun. Chem., 2018, 1(27): 1.

[16]

Zhen X, Tao Y, An Z, Chen P, Xu C, Chen R, Huang W, Pu K. Adv. Mater., 2017, 29(33): 1606665.

[17]

Fateminia S M A, Mao Z, Xu S, Yang Z, Chi Z, Liu B. Angew. Chem. Int. Ed. Engl., 2017, 56(40): 12160.

[18]

He Z, Gao H, Zhang S, Zheng S, Wang Y, Zhao Z, Ding D, Yang B, Zhang Y, Yuan W Z. Adv. Mater., 2019, 31(18): 1807222.

[19]

Zhang T, Gao H, Lv A, Wang Z, Gong Y, Ding D, Ma H, Zhang Y, Yuan W Z. J. Mater. Chem. C, 2019, 7(29): 9095.

[20]

Cai S, Shi H, Li J, Gu L, Ni Y, Cheng Z, Wang S, Xiong W W, Li L, An Z, Huang W. Adv. Mater., 2017, 29(35): 9095.

[21]

Shi H F, Zou L, Huang K W, Wang H, Sun C, Wang S, Ma H L, He Y R, Wang J P, Yu H D, Yao W, An Z F, Zhao Q, Huang W. ACS Appl. Mater. Inter., 2019, 11(20): 18103.

[22]

Wang X F, Xiao H Y, Chen P Z, Yang Q Z, Chen B, Tung C H, Chen Y Z, Wu L Z. J. Am. Chem. Soc., 2019, 141(12): 5045.

[23]

Yang J, Gao H, Wang Y, Yu Y, Gong Y, Fang M, Ding D, Hu W, Tang B Z, Li Z. Mater. Chem. Front., 2019, 3(7): 1391.

[24]

Nicol A, Kwok R T K, Chen C, Zhao W, Chen M, Qu J, Tang B Z. J. Am. Chem. Soc., 2017, 139(41): 14792.

[25]

Chen X, Xu C, Wang T, Zhou C, Du J, Wang Z, Xu H, Xie T, Bi G, Jiang J, Zhang X, Demas J N, Trindle C O, Luo Y, Zhang G. Angew. Chem. Int. Ed., 201, 55(34): 9872.

[26]

Zhang G, Palmer G M, Dewhirst M W, Fraser C L. Nat. Mater., 2009, 8(9): 747.

[27]

Wang T, Su X G, Zhang X P, Huang W H, Huang L K, Zhang X Y, Sun X, Luo Y, Zhang G Q. J. Mater. Chem. C, 2019, 7(32): 9917.

[28]

Chen X H, Liu X D, Lei J L, Xu L, Zhao Z H, Kausar F, Xie X Y, Zhu X Y, Zhang Y M, Yuan W Z. Mol. Syst. Des. Eng., 2018, 3(2): 364.

[29]

Zhou Q, Wang Z Y, Dou X Y, Wang Y Z, Liu S E, Zhang Y M, Yuan W Z. Mater. Chem. Front., 2019, 3(2): 257.

[30]

Ni X L, Xiao X, Cong H, Zhu Q J, Xue S F, Tao Z. Acc. Chem. Res., 2014, 47(4): 1386.

[31]

Wang H, Ji X, Li Z, Huang F. Adv. Mater., 2017, 29(14): 1606117.

[32]

Wang J, Huang Z, Ma X, Tian H. Angew. Chem. Int. Ed., 2020, 59(25): 9928.

[33]

Wang J, Gu X, Ma H, Peng Q, Huang X, Zheng X, Sung S H P, Shan G, Lam J W Y, Shuai Z, Tang B Z. Nat. Commun., 2018, 9(1): 2963.

[34]

Wang J, Gu X, Zhang P, Huang X, Zheng X, Chen M, Feng H, Kwok R T K, Lam J W Y, Tang B Z. J. Am. Chem. Soc., 2017, 139(46): 16974.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/