Recent Development of DNA-modified AIEgen Probes for Biomedical Application

Qinyu Hu , Jun Wu , Lulu Chen , Xiaoding Lou , Fan Xia

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 66 -72.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 66 -72. DOI: 10.1007/s40242-021-0388-z
Review

Recent Development of DNA-modified AIEgen Probes for Biomedical Application

Author information +
History +
PDF

Abstract

A variety of DNA-based probes are utilized for the detections of multiple analytes and DNA nanotechnology has been thriving for recent decades and achieving numerous nanostructures, mainly focusing on DNA morphology modulation and multifunctional systems engineered into to the complicated works. Among the numerous detections, fluorescence method is a non-invasive, highly selective and sensitive means for varieties of applications, but their emissions are often compromised by the aggregation-caused quenching(ACQ) effect, which weakens their applications. The aggregation induced emission luminogens(AIEgens) are created with non emissive or weakly emissive in a low concentration but emit strong fluorescence in a high concentration with aggregated states. Herein, numerous functionalized AIEgens have been emerged and used for detection and imaging and DNA-modified AIEgen probes are introduced. In this vein, here we report the progress on DNA-modified AIEgen probes in recent years and highlight their conjugation strategies including covalent bonding, electrostatic interaction and their applications of biosensing. Moreover, multiple DNA strands are needed to introduce into the DNA-modified AIEgen probes for more purposes. At the end, some challenges are mentioned to discuss the new trend of DNA-modified AIEgen probes.

Keywords

Aggregation induced emission luminogen(AIEgen) / DNA-modified probe / Detection / Imaging / Biomedical application

Cite this article

Download citation ▾
Qinyu Hu, Jun Wu, Lulu Chen, Xiaoding Lou, Fan Xia. Recent Development of DNA-modified AIEgen Probes for Biomedical Application. Chemical Research in Chinese Universities, 2021, 37(1): 66-72 DOI:10.1007/s40242-021-0388-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yakovchuk P, Protozanova E, Frank-Kamenetskii M D. Nucleic Acids Res., 200, 34(2): 564.

[2]

Myers L C, Kornberg R D. Annu. Rev. Biochem., 2000, 69: 729.

[3]

Wang Y F, Zhang X, Zou G G, Peng S, Liu C X, Zhou X. Acc. Chem. Res., 2019, 52(4): 1016.

[4]

Seeman N C. Q. Rev.Biophys., 2005, 38(4): 363.

[5]

Tian T, Song Y Y, Wei L, Wang J Q, Fu B S, He Z Y, Yang X R, Wu F, Xu G H, Liu S M, Li C G, Wang S R, Zhou X. Nucleic Acids Res., 2017, 45(5): 2283.

[6]

Griffith J D, Comeau L, Rosenfield S, Stansel R M, Bianchi A, Moss H, de Lange T. Cell, 1999, 97(4): 503.

[7]

Xiang Y, Lu Y. Nat. Chem., 2011, 3(9): 697.

[8]

Li J, Lu Y. J. Am. Chem. Soc., 2000, 122(42): 10466.

[9]

Torabi S F, Wu P W, McGhee C E, Chen L, Hwang K, Zheng N, Cheng J J, Lu Y. Proc. Natl. Acad. Sci. USA, 2015, 112(19): 5903.

[10]

Duan R X, Zuo X L, Wang S T, Quan X Y, Chen D L, Chen Z F, Jiang L, Fan C H, Xia F. J. Am. Chem. Soc., 2013, 135(12): 4604.

[11]

Wu J, Hu Q Y, Chen Q, Dai J, Wu X, Wang S X, Lou X D, Xia F. ACS Applied Bio Materials, 2020, 3(12): 9002.

[12]

Cutler J I, Auyeung E, Mirkin C A. J. Am. Chem. Soc., 2012, 134(3): 1376.

[13]

Albert S K, Sivakumar I, Golla M, Thelu H V P, Krishnan N, Libin K L J, Ashish, Varghese R. J. Am. Chem. Soc., 2017, 139(49): 17799.

[14]

Hong F, Zhang F, Liu Y, Yan H. Chem. Rev., 2017, 117(20): 12584.

[15]

Li Z H, Wang J, Li Y X, Liu X W, Yuan Q. Mater. Chem. Front, 2018, 2: 423.

[16]

Haugland R. P., The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Life Technologies, Carlsbad, CA, 2010

[17]

Ding D, Li K, Liu B, Tang B Z. Acc. Chem. Res., 2013, 46(11): 2441.

[18]

Luo J, Xie Z, Lam J W, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem. Commun., 2001, 18: 1740.

[19]

Xia F, Wu J, Wu X, Hu QY, Dai J, Lou X D. Acc. Chem. Res., 2019, 52(11): 3064.

[20]

Wu F, Wu X, Duan Z J, Huang Y, Lou X D, Xia F. Small, 2019, 15(32): e1804839.

[21]

Cheng Y, Sun C L, Liu R, Yang J L, Dai J, Zhai T Y, Lou X D, Xia F. Angew Chem. Int. Ed., 2019, 58(15): 5049.

[22]

Chen C, Ni X, Jia S, Liang Y, Wu X, Kong D, Ding D. Adv. Mater., 2019, 31(52): 1904914.

[23]

Ni X, Zhang X, Duan X, Zheng H, Xue X, Ding D. ACS Nano, 2019, 19: 318.

[24]

Chen C, Ou H, Liu R, Ding D. Adv. Mater., 2020, 32(3): 1806331.

[25]

Chen C, Ni X, Tian H, Liu Q, Guo D, Ding D. Angew Chem. Int. Ed., 2020, 59(25): 10008.

[26]

Yang J L, Dai J, Wang Q, Cheng Y, Guo J J, Zhao Z J, Hong Y N, Lou X D, Xia F. Angew Chem. Int. Ed., 2020, 59(46): 20450.

[27]

Dai J, Cheng Y, Wu J, Wang Q, Wang W W, Yang J L, Zhao Z J, Lou X D, Xia F, Wang S X, Tang B Z. ACS Nano., 2020, 14(11): 14698.

[28]

Treiber T, Treiber N, Meister G. Nat. Rev. Mol. Cell Biol., 2019, 20(1): 5.

[29]

Min X H, Zhuang Y, Zhang Z Y, Jia Y M, Hakeem A, Zheng F X, Cheng Y, Tang B Z, Lou X D, Xia F. ACS Appl. Mater. Interfaces, 2015, 7(30): 16813.

[30]

Min X H, Zhang M S, Huang F J, Lou X D, Xia F. ACS Appl. Mater. Interfaces, 201, 8(14): 8998.

[31]

Wang X D, Dai J, Min X H, Yu Z H, Cheng Y, Huang K X, Yang J L, Yi XQ, Lou X D, Xia F. Anal. Chem., 2018, 90(13): 8162.

[32]

Ma K, Zhang F L, Sayyadi N, Chen W J, Anwer A G, Care A, Xu B, Tian W J, Goldys E M, Liu G Z. ACS Sens., 2018, 3(2): 320.

[33]

Chen J, Jiang H, Zhou H P, Hu Z Z, Niu N, Shahzad S A, Yu C. Chem. Commun., 2017, 53(15): 2398.

[34]

Lu D Q, He L, Wang Y Y, Xiong M Y, Hu M M, Liang H, Huan S Y, Zhang X B, Tan W H. Talanta, 2017, 167: 550.

[35]

Zhu L, Zhou J, Xu G, Li C, Ling P, Liu B, Ju H, Lei J. Chem. Sci., 2018, 9(9): 2559.

[36]

Zhang X J, Lou X D, Xia F. Theranostics, 2017, 7(7): 1847.

[37]

Min X H, Xia L, Zhuang Y, Wang X D, Du J, Zhang X J, Lou X D, Xia F. Sci. Bull., 2017, 62(14): 997.

[38]

Lou X D, Zhuang Y, Zuo X L, Jia Y M, Hong Y N, Min X H, Zhang Z Y, Xu X M, Liu N N, Xia F, Tang B Z. Anal. Chem., 2015, 87(13): 6822.

[39]

Zhuang Y, Zhang M S, Chen B, Duan R X, Min X H, Zhang Z Y, Zheng F X, Liang H G, Zhao Z J, Lou X D, Xia F. Anal. Chem., 2015, 87(18): 9487.

[40]

Zhuang Y, Xu Q, Huang F J, Gao P C, Zhao Z J, Lou X D, Xia F. ACS Sens., 201, 1(5): 572.

[41]

Zhuang Y, Huang F J, Xu Q, Zhang M S, Lou X D, Xia F. Anal. Chem., 201, 88(6): 3289.

[42]

Zhuang Y, Shang C L, Lou X D, Xia F. Anal. Chem., 2017, 89(3): 2073.

[43]

Ou X W, Hong F, Zhang Z Y, Cheng Y, Zhao Z J, Gao P C, Lou X D, Xia F, Wang S T. Biosens. Bioelectron, 2017, 89: 417.

[44]

Wang H, Ma K, Xu B, Tian W J. Small, 201, 12(47): 6613.

[45]

Lou X D, Leung C W T, Dong C, Hong Y N, Chen S J, Zhao E G, Lamb J W Y, Tang B Z. RSC Adv., 2014, 4: 33307.

[46]

Gao Y T, He Z Y, He X W, Zhang H K, Weng J, Yang X L, Meng F L, Luo L, Tang B Z. J. Am. Chem. Soc., 2019, 141(51): 20097.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/