Mitochondrion-anchoring AIEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy

Fang Fang , Yuting Gao , Liang Luo

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 137 -142.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 137 -142. DOI: 10.1007/s40242-021-0379-0
Article

Mitochondrion-anchoring AIEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy

Author information +
History +
PDF

Abstract

Photosensitizers that can target and accumulate in mitochondria are expected to achieve good therapeutic effects in photodynamic therapy, as mitochondria are the energy generation factory in cells. Herein, we designed and synthesized a novel mitochondrion-targeting photosensitizer TPC-Py with aggregation-induced emission characteristics for image-guided photodynamic therapy. TPC-Py possessed an efficient production of 1O2, with a quantum yield of 11.65%, upon mild white light irradiation (6 mW/cm2). TPC-Py exhibited good biocompatibility under dark condition, but showed remarkable cytotoxicity towards human cervical carcinoma(HeLa) cells with a half maximal inhibitory concentration(IC50) of 3.2 µmol/L when exposed to white light irradiation(14.4 J/cm2). In addition, the Stokes shift of TPC-Py was as high as 150 nm, so that it could prevent self-absorption and increase the signal-to-noise ratio of fluorescence imaging. The excellent performance of TPC-Py makes it a promising candidate in imaging-guided clinical PDT for cancer in the near future.

Keywords

Photodynamic therapy / Photosensitizer / Aggregation-induced emission / Mitochondria / Imaging-guided

Cite this article

Download citation ▾
Fang Fang, Yuting Gao, Liang Luo. Mitochondrion-anchoring AIEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy. Chemical Research in Chinese Universities, 2021, 37(1): 137-142 DOI:10.1007/s40242-021-0379-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou L, Ge X, Zhou J, Wei S, Shen J. RSC Adv., 2015, 5: 2794.

[2]

Castano A P, Demidova T N, Hamblin M R. Photodiagn. Photodyn, 2004, 1: 279.

[3]

Foote C S. Photochem. Photobiol., 1991, 54: 659.

[4]

Triesscheijn M, Baas P, Schellens J H, Stewart F A. Oncologist, 200, 11: 1034.

[5]

Th F, Kasper K. Z. Phys. Chem., 1954, 1: 275.

[6]

Luo J., Xie Z., Lam J. W., Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y., Zhu D., Tang B. Z., Chem. Commun., 2001, 1740

[7]

Ren Y, Lam J W, Dong Y, Tang B Z, Wong K S. J. Phys. Chem. B, 2005, 109: 1135.

[8]

Würthner F. Angew. Chem. Int. Ed., 2020, 59: 14192.

[9]

Alifu N, Dong X B, Li D Y, Sun X H, Zebibula A, Zhang D Q, Zhang G X, Qian J. Mater. Chem. Front, 2017, 1: 1746.

[10]

Geng J L, Li K, Ding D, Zhang X H, Qin W, Liu J Z, Tang B Z, Liu B. Small, 2012, 8: 3655.

[11]

Gao Y, Wang X, He X, He Z, Yang X, Tian S, Meng F, Ding D, Luo L, Tang B Z. Adv. Funct. Mater., 2019, 29: 1902673.

[12]

He Z, Gao Y, Zhang H, Wang X, Meng F, Luo L, Tang B Z. Chem. Commun., 2020, 56: 7785.

[13]

Zhu C, Kwok R T K, Lam J W Y, Tang B Z. ACS Appl. Bio. Mater., 2018, 1: 1768.

[14]

Ochsner M. J. Photochem. Photobiol. B: Biol., 1997, 39: 1.

[15]

Feng G, Liu J, Zhang C J, Liu B. ACS Appl. Mater. Interfaces, 2018, 10: 11546.

[16]

Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Chem. Rev., 2017, 117: 10043.

[17]

Gui C, Zhao E, Kwok R T K, Leung A C S, Lam J W Y, Jiang M, Deng H, Cai Y, Zhang W, Su H, Tang B Z. Chem. Sci., 2017, 8: 1822.

[18]

Qu Y, Jin B, Liu Y, Wu Y, Yang L, Wu J, Hua J. Tetrahedron Lett., 2013, 54: 4942.

[19]

Zhang R, Feng G, Zhang C J, Cai X, Cheng X, Liu B. Anal. Chem., 201, 88: 4841.

[20]

Xu S, Yuan Y, Cai X, Zhang C-J, Hu F, Liang J, Zhang G, Zhang D, Liu B. Chem. Sci., 2015, 6: 5824.

[21]

Feng G, Liu B. Small, 201, 12: 6528.

[22]

Gu B, Wu W, Xu G, Feng G, Yin F, Chong P H J, Qu J, Yong K T, Liu B. Adv. Mater., 2017, 29: 1701076.

[23]

Jiang M, Gu X, Lam J W Y, Zhang Y, Kwok R T K, Wong K S, Tang B Z. Chem. Sci., 2017, 8: 5440.

[24]

Grabowski Z R, Rotkiewicz K, Rettig W. Chem. Rev., 2003, 103: 3899.

[25]

Reichardt C. Chem. Rev., 1994, 94: 2319.

[26]

Zheng Z, Zhang T F, Liu H X, Chen Y C, Kwok R T K, Ma C, Zhang P F, Sung H H Y, Williams I D, Lam J W Y, Wong K S, Tang B Z. ACS Nano, 2018, 12: 8145.

[27]

Wang D, Su H, Kwok R T K, Hu X, Zou H, Luo Q, Lee M M S, Xu W, Lam J W Y, Tang B Z. Chem. Sci., 2018, 9: 3685.

[28]

Cheng Y, Li G, Liu Y, Shi Y, Gao G, Wu D, Lan J, You J. J. Am. Chem. Soc., 201, 138: 4730.

[29]

Chen X, Zhong Z, Xu Z, Chen L, Wang Y. Free Radical Res., 2010, 44: 587.

[30]

Wardman P. Free Radical Biol. Med., 2007, 43: 995.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/