Study of Aldo-keto Reductase 1C3 Inhibitor with Novel Framework for Treating Leukaemia Based on Virtual Screening and In vitro Biological Activity Testing

Fei Liu , Ren Li , Jing Ye , Yujie Ren , Zhipeng Tang , Rongchen Li , Cuihua Zhang , Qunlin Li

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 778 -786.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) :778 -786. DOI: 10.1007/s40242-021-0279-3
Article

Study of Aldo-keto Reductase 1C3 Inhibitor with Novel Framework for Treating Leukaemia Based on Virtual Screening and In vitro Biological Activity Testing

Author information +
History +
PDF

Abstract

Aldo-keto reductase 1C3(AKR1C3) is a potential target for the treatment of acute myeloid leukaemia and T-cell acute lymphoblastic leukaemia. In this study, pharmacophore models, molecular docking and virtual screening of target prediction were used to find a potential AKR1C3 inhibitor. Firstly, eight bacteriocin derivatives(Z1–Z8) were selected as training sets to construct 20 pharmacophore models. The best pharmacophore model MODEL_016 was obtained by Decoy test(the enrichment degree was 21.5117, and the fitting optimisation degree was 0.9668). Secondly, MODEL_016 was used for the virtual screening of ZINC database. Thirdly, the hit 83256 molecules were docked into the AKR1C3 protein. Compared to the total scores and interactions between compounds and protein, 16532 candidate compounds with higher docking scores and interactions with important residues PHE306 and TRP227 were screened. Lastly, eight compounds(A1–A8) that had good absorption, distribution, metabolism, excretion and toxicity(ADMET) properties were obtained by target prediction. Compounds A3 and A7 with high total score and good target prediction results were selected for in vitro biological activity test, whose IC50 values were 268.3 and 88.94 µmol/L, respectively. The results provide an important foundation for the discovery of novel AKR1C3 inhibitors. The research methods used in this study can also provide important references for the research and development of new drugs.

Keywords

Virtual screening / In vitro biological activity test / Absorption, distribution, metabolism, excretion and toxicity(ADMET) prediction / Aldo-keto reductase 1C3(AKR1C3) inhibitor / Leukaemia

Cite this article

Download citation ▾
Fei Liu, Ren Li, Jing Ye, Yujie Ren, Zhipeng Tang, Rongchen Li, Cuihua Zhang, Qunlin Li. Study of Aldo-keto Reductase 1C3 Inhibitor with Novel Framework for Treating Leukaemia Based on Virtual Screening and In vitro Biological Activity Testing. Chemical Research in Chinese Universities, 2021, 37(3): 778-786 DOI:10.1007/s40242-021-0279-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Horvath D. J. Med. Chem., 1997, 40(15): 2412.

[2]

Muegge I, Mukherjee P. Expert Opinion on Drug Discovery, 201, 11(2): 137.

[3]

Yang B Y, Ma J, Gao B, Lu X L. Current Pharmaceutical Biotechnology, 2019, 20(4): 293.

[4]

Geromichalos G D, Alifieris C E, Geromichalou E G, Trafalis D T. Journal of Buon, 201, 21(4): 764.

[5]

Golub A G, Yakovenko O Y, Bdzhola V G, Sapelkin V M, Zien P, Yarmoluk S M. Journal of Medicinal Chemistry, 200, 49(22): 6443.

[6]

Liu H, Gao Z B, Yao Z, Zheng S, Li Y, Zhu W, Tan X, Luo X, Shen J, Chen K, Hu G Y, Jiang H. Journal of Medicinal Chemistry, 2007, 50(1): 83.

[7]

Khan S U, Ahemad N, Chuah L H, Naidu R, Htar T T. RSC Advances, 2019, 9(5): 2525.

[8]

Uba A I, Yelekçi K. Computational Biology and Chemistry, 2018, 75(5): 131.

[9]

Mazalan L, Bell A, Sbaffi L, Willett P. ChemMedChem, 2018, 13(6): 582.

[10]

Kshitij V, Nehal G, Tianzhu Z, Phumvadee W, Srivastava S K, Penning T M. Molecular Cancer Therapeutics, 2018, 17(9): 1833.

[11]

Verma K, Gupta N, Zang T, Wangtrakluldee P, Srivastava S K, Penning T M, Trippier P C. ACS Medicinal Chemistry Letters, 201, 7(8): 774.

[12]

Khanim F, Davies N, Veliça P, Hayden R, Ride J, Pararasa C, Chong M G, Gunther U, Veerapen N, Winn P, Farmer R, Trivier E, Rigoreau L, Drayson M, Bunce C. British Journal of Cancer, 2014, 120(6): 1506.

[13]

Zhang G, Wang H, Zhu K, Yang Y, Li J, Jiang H, Liu Z. Biomedicine and Pharmacotherapy, 2019, 92(9): 390.

[14]

Verma K, Zang T, Penning T M, Trippier P C. Journal of Medicinal Chemistry, 2019, 62(7): 3590.

[15]

Baptista S J, Silva M M C, Moroni E, Meli M, Colombo G, Dinis T C P. PlosOne, 2017, 12(1): e0170846.

[16]

Zou Y, Hu Y, Ge S, Zheng Y, Li Y, Liu W, Guo W, Zhang Y, Xu Q, Lai Y. European Journal of Medicinal Chemistry, 2019, 184: 111750.

[17]

Vyas V K, Qureshi G, Ghate M, Patel H, Dalai S. SAR and QSAR in Environmental Research, 201, 27(6): 427.

[18]

Banaganapalli B, Mohammed K, Khan I A, Al-Aama J Y, Elango R, Shaik N A. Journal of Cellular Biochemistry, 201, 117(9): 2023.

[19]

Xie H, Qiu K, Xie X. International Journal of Molecular Sciences, 2015, 16(3): 5072.

[20]

Güner O F, Bowen J P. Journal of Chemical Information & Modeling, 2014, 54(5): 1269.

[21]

Panicker P S, Melge A R, Biswas L, Keechilat P, Mohan C G. Chemical Biology & Drug Design, 2017, 90(4): 629.

[22]

Zeb A, Son M, Yoon S, Kim J H, Park S J, Lee K W. Computational and Structural Biotechnology Journal, 2019, 17: 579.

[23]

Pala D, Castelli R, Incerti M, Russo S, Lodola A. Journal of Chemical Information and Modeling, 2014, 54(10): 2621.

[24]

Kaushik-Basu N, Theresa P J, Manvar D, Kondepudi S, Yogeeswari P. Journal of Chemical Information & Modeling, 2014, 54(2): 539.

[25]

Woo S H, Frechette S, Khalil E A, Bouchain G, Vaisburg A, Bernstein N, Moradei O, Leit S, Allan M, Fournel M, Trachy-Bourget M C, Li Z, Besterman J M, Delorme D. Journal of Medicinal Chemistry, 2002, 45(13): 2877.

[26]

Khan T, Ahmad R, Azad I, Raza S, Joshi S, Khan A R. Computational Biology and Chemistry, 2018, 40(11): 178.

[27]

Tong J, Jiang G, Li L, Li Y. Journal of Structural Chemistry, 2019, 60(2): 210.

[28]

Pandya H A, Jasrai Y T, Kumar S P. Current Computer: Aided Drug Design, 201, 12(1): 15.

[29]

Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. Nucleic Acids Research, 2014, 42(W1): 32.

[30]

Verma K, Zang T, Gupta N, Penning T M, Trippier P C. ACS Medicinal Chemistry Letters, 201, 7(8): 774.

[31]

Atkovska K, Samsonov S A, Paszkowski-Rogacz M, Pisabarro M T. International Journal of Molecular Sciences, 2014, 15(2): 2622.

[32]

Bachmann S J, van Gunsteren W F. Journal of Physical Chemistry B, 2014, 118(34): 10175.

[33]

Biswas R, Chowdhury N, Biswas S, Roy R, Bagchi A. Journal of Molecular Graphics and Modelling, 2019, 45(10): 11.

[34]

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee P W, Tang Y. Journal of Chemical Information and Modeling, 2012, 52(11): 3099.

[35]

Khur N, Zur A A, Wittwer M B, Lin L, Yee S W, Sal A. Journal of Chemical Information and Modeling, 2017, 57(6): 1402.

[36]

Sun Y, Zhang R, Li D, Feng L, Wu D, Feng L. Journal of Chemical Information & Modeling, 2014, 54(3): 894.

[37]

Wieder M, Garon A, Perricone U, Boresch S, Seidel T, Almerico A M. Journal of Chemical Information & Modeling, 2017, 57(2): 365.

[38]

Rohilla A, Khare G, Tyagi A K. Scientific Reports, 2017, 7(1): 1.

[39]

Zhang W, Lin W, Zhang D, Wang S, Niu Y. Current Drug Metabolism, 2019, 20(3): 194.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/