Solution-based Preparation of High Sulfur Content Sulfur/Graphene Cathode Material for Li-S Battery

Chen Zhang , Donghai Liu , Chuannan Geng , Wuxing Hua , Quanjun Tang , Guowei Ling , Quan-Hong Yang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 323 -327.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 323 -327. DOI: 10.1007/s40242-021-0036-7
Article

Solution-based Preparation of High Sulfur Content Sulfur/Graphene Cathode Material for Li-S Battery

Author information +
History +
PDF

Abstract

Practical Li-sulfur batteries require the high sulfur loading cathode to meet the large-capacity power demand of electrical equipment. However, the sulfur content in cathode materials is usually unsatisfactory due to the excessive use of carbon for improving the conductivity. Traditional cathode fabrication strategies can hardly realize both high sulfur content and homogeneous sulfur distribution without aggregation. Herein, we designed a cathode material with ultrahigh sulfur content of 88%(mass fraction) by uniformly distributing the water dispersible sulfur nanoparticles on three-dimensionally conductive graphene framework. The water processable fabrication can maximize the homogeneous contact between sulfur nanoparticles and graphene, improving the utilization of the interconnected conductive surface. The obtained cathode material showed a capacity of 500 mA·h/g after 500 cycles at 2.0 A/g with an areal loading of 2 mg/cm2. This strategy provides possibility for the mass production of high-performance electrode materials for high-capacity Li-S battery.

Keywords

Li-sulfur battery / High sulfur loading / Polysulfides shuttling

Cite this article

Download citation ▾
Chen Zhang, Donghai Liu, Chuannan Geng, Wuxing Hua, Quanjun Tang, Guowei Ling, Quan-Hong Yang. Solution-based Preparation of High Sulfur Content Sulfur/Graphene Cathode Material for Li-S Battery. Chemical Research in Chinese Universities, 2021, 37(2): 323-327 DOI:10.1007/s40242-021-0036-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.

[2]

Yin Y X, Xin S, Guo Y G, Wan L J. Angew. Chem. Int. Ed., 2013, 52(50): 13186.

[3]

Fang R, Zhao S, Sun Z, Wang D W, Cheng H M, Li F. Adv. Mater., 2017, 29(48): 1606823.

[4]

Lim J, Pyun J, Char K. Angew. Chem. Int. Ed., 2015, 54(11): 3249.

[5]

Zhao J, Yang M, Yang N, Wang J, Wang D. Chem. Res. Chinese Universites, 2020, 36(3): 313.

[6]

Yang X., Qin T., Zhang X., Liu X., Wang Z., Zhang W., Zheng W., Chem. Res. Chinese Universites, 2020, https://doi.org/10.1007/s40242-020-0310-0

[7]

Zhou G, Zhao Y, Manthiram A. Adv. Energy Mater., 2015, 5(9): 1402263.

[8]

Lv D, Zheng J, Li Q, Xie X, Ferrara S, Nie Z, Mehdi L B, Browning N D, Zhang J, Graff G L, Liu J, Xiao J. Adv. Energy Mater., 2015, 5: 1402290.

[9]

Ji X, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.

[10]

Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L. J. Am. Chem. Soc., 2012, 134(45): 18510.

[11]

Liu D, Zhang C, Xu Z, Zhang L, Lv W, Zou X, Kang F, Zhi L, Cheng H-M, Yang Q-H. Nano Energy, 2017, 41: 665.

[12]

Ma H, Kong D, Xu Y, Xie X, Tao Y, Xiao Z, Lv W, Jang H D, Huang J, Yang Q-H. Small, 2017, 13(30): 201701026.

[13]

Tao Y, Xie X, Lv W, Tang D-M, Kong D, Huang Z, Nishihara H, Ishii T, Li B, Golberg D, Kang F, Kyotani T, Yang Q-H. Sci. Rep., 2013, 3(7471): 2975.

[14]

Zhang C, Lv W, Tao Y, Yang Q-H. Energy Environ. Sci., 2015, 8(5): 1390.

[15]

Han J, Kong D, Lv W, Tang D, Han D, Zhang C, Liu D, Xiao Z, Zhang X, Xiao J, He X, Hsia F-C, Zhang C, Tao Y, Golberg D, Kang F, Zhi L, Yang Q-H. Nat. Commun., 2018, 9(1): 402.

[16]

Qi C, Luo C, Tao Y, Lv W, Zhang C, Deng Y, Li H, Han J, Ling G, Yang Q-H. Sci. China Mater., 2020, 63: 1870.

[17]

Zhang C, Liu D-H, Lv W, Wang D-W, Wei W, Zhou G-M, Wang S, Li F, Li B-H, Kang F, Yang Q-H. Nanoscale, 2015, 7(13): 5592.

[18]

Zhang C, Yang Q-H. Sci. China Mater., 2015, 58(5): 349.

[19]

Wang H, Yang Y, Liang Y, Robinson J T, Li Y, Jackson A, Cui Y, Dai H. Nano Lett., 2011, 11: 2644.

[20]

Xi K, Cao S, Peng X, Ducati C, Kumar R V, Cheetham A K. Chem. Commun., 2013, 49: 2192.

[21]

Chen X, Xiao Z, Ning X, Liu Z, Yang Z, Zou C, Wang S, Chen X, Chen Y, Huang S. Adv. Energy Mater., 2014, 4: 1301988.

[22]

Strubel P, Thieme S, Biemelt T, Helmer A, Oschatz M, Brueckner J, Althues H, Kaskel S. Adv. Funct. Mater., 2015, 25: 287.

[23]

Zhou X, Xie J, Yang J, Zou Y, Tang J, Wang S, Ma L, Liao Q. J. Power Sources, 2013, 243: 993.

[24]

Liu D, Zhan C, Lv X, Zheng X, Zhang L, Zhi L, Yang Q-H. Chinese J. Chem., 201, 34(1): 41.

[25]

Li Q, Song Y, Xu R, Zhang L, Gao J, Xia Z, Tian Z, Wei N, Rümmeli M H, Zou X, Sun J, Liu Z. ACS Nano, 2018, 12(10): 10240.

[26]

Duan L, Zhao L, Cong H, Zhang X, W, Xue C. Small, 2019, 15(7): 1804347.

AI Summary AI Mindmap
PDF

239

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/