Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries

Huanfeng Wang , Jingjing Li , Fei Li , Dehui Guan , Xiaoxue Wang , Wenhua Su , Jijing Xu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 232 -245.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 232 -245. DOI: 10.1007/s40242-021-0026-9
Review

Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries

Author information +
History +
PDF

Abstract

The instabilities of the battery including cathode corrosion/passivation, shuttling effect of the redox mediators, Li anode corrosion, and electrolyte decomposition are major barriers toward the practical implementation of lithium-oxygen(Li-O2) batteries. Functional materials offer great potential in high performance Li-O2 batteries owing to their functional tailorability of chemical modification for alleviating side reactions and improving catalysis activity, well-defined properties for discharge products storage, and fast mass and electron transfer paths. In this review, instability problems of non-aqueous Li-O2 batteries and recent studies related to the functional materials in tackling the instability issues from rational cathode construction, inhibition of redox mediators(RMs) shuttling, anode protection and novel electrolyte design are illustrated. Future research directions to overcome the critical issues are also proposed for this promising battery technology. The instability issues and the related strategies with functional materials based on the comprehensive consideration of all battery components proposed in this review provide the systematic, deep understanding and rational design of functional materials for Li-O2 batteries, which is beneficial to achieving the practical Li-O2 batteries.

Keywords

Functional material / Instability challenge / Parasitic reaction / Non-aqueous Li-O2 battery

Cite this article

Download citation ▾
Huanfeng Wang, Jingjing Li, Fei Li, Dehui Guan, Xiaoxue Wang, Wenhua Su, Jijing Xu. Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 232-245 DOI:10.1007/s40242-021-0026-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng N, He P, Zhou H. Adv. Energy Mater., 201, 6: 1502303.

[2]

Tan P, Jiang H, Zhu X, An L, Jung C, Wu M, Shi L, Shyy W, Zhao T. Appl. Energy, 2017, 204: 780.

[3]

Thotiyl M M O, Freunberger S A, Peng Z Q, Chen Y H, Liu Z, Bruce P G. Nat. Mater., 2013, 12: 1050.

[4]

Wang H., Wang X., Li M., Zheng L., Guan D., Huang X., Xu J., Yu J., Adv. Mater., 2020, 2002559

[5]

Ma L, Yu T, Tzoganakis E, Amine K, Wu T, Chen Z, Lu J. Adv. Energy Mater., 2018, 8: 1800348.

[6]

Lyu Z, Zhou Y, Dai W, Cui X, Lai M, Wang L, Huo F, Huang W, Hu Z, Chen W. Chem. Soc. Rev., 2017, 46: 6046.

[7]

Wang D, Mu X, He P, Zhou H. Mater. Today, 2019, 26: 87.

[8]

Yang S, He P, Zhou H. Energy Storage Mater., 2018, 13: 29.

[9]

Liu T, Vivek J P, Zhao E W, Lei J, Garcia-Araez N, Grey C P. Chem. Rev., 2020, 120: 6558.

[10]

Huang G, Wang J, Zhang X. ACS Cent. Sci., 2020, 6: 2136.

[11]

Freunberger S A, Chen Y H, Drewett N E, Hardwick L J, Barde F, Bruce P G. Angew. Chem. Int. Ed., 2011, 50: 8609.

[12]

Park J-B, Lee S H, Jung H-G, Aurbach D, Sun Y-K. Adv. Mater., 2018, 30: 1704162.

[13]

Lim H-D, Lee B, Zheng Y, Hong J, Kim J, Gwon H, Ko Y, Lee M, Cho K, Kang K. Nat. Energy, 201, 1: 16066.

[14]

Chen Z-F, Lin X, Xia H, Hong Y, Liu X, Cai S, Duan J-N, Yang J, Zhou Z, Chang J-K, Zheng M, Dong Q. J. Mater. Chem. A, 2019, 7: 14260.

[15]

Lee S H, Park J-B, Lim H-S, Sun Y-K. Adv. Energy Mater., 2017, 7: 1602417.

[16]

Zhang P, Zhao Y, Zhang X B. Chem. Soc. Rev., 2018, 47: 2921.

[17]

Freunberger S A, Chen Y, Peng Z, Griffin J M, Hardwick L J, Bardé F, Novák P, Bruce P G. J. Am. Chem. Soc., 2011, 133: 8040.

[18]

Roberts M, Younesi R, Richardson W, Liu J, Gustafsson T, Zhu J, Edström K. ECS Electrochem. Lett., 2014, 3: A62.

[19]

Zhang P, Ding M, Li X, Li C, Li Z, Yin L. Adv. Energy Mater., 2020, 10: 2001789.

[20]

Bryantsev V S, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase G V. J. Phys. Chem. A, 2011, 115: 12399.

[21]

Li Y, Wang X, Dong S, Chen X, Cui G. Adv. Energy Mater., 201, 6: 1600751.

[22]

Li L, Chang Z-W, Zhang X-B. Adv. Sustainable Syst., 2017, 1: 1700036.

[23]

Zhang T, Zhou H. Nat. Commun., 2013, 4: 1817.

[24]

Ottakam Thotiyl M M, Freunberger S A, Peng Z, Bruce P G. J. Am. Chem. Soc., 2013, 135: 494.

[25]

McCloskey B D, Burke C M, Nicholsab J E, Renfrew S E. Chem. Commun., 2015, 51: 12701.

[26]

Hu X, Luo G, Zhao Q, Wu D, Yang T, Wen J, Wang R, Xu C, Hu N. J. Am. Chem. Soc., 2020, 142: 16776.

[27]

Song L N, Zhang W, Wang Y, Ge X, Zou L C, Wang H F, Wang X X, Liu Q C, Li F, Xu J J. Nat. Commun., 2020, 11: 2191.

[28]

Wang P, Ren Y, Wang R, Zhang P, Ding M, Li C, Zhao D, Qian Z, Zhang Z, Zhang L, Yin L. Nat. Commun., 2020, 11: 1576.

[29]

Yoon K R, Shin K, Park J, Cho S H, Kim C, Jung J W, Cheong J Y, Byon H R, Lee H M, Kim I D. ACS Nano, 2018, 12: 128.

[30]

Nam J S, Jung J-W, Youn D-Y, Cho S-H, Cheong J Y, Kim M S, Song S-W, Kim S-J, Kim I-D. ACS Appl. Mater. Interfaces, 2020, 12: 55756.

[31]

Bae Y, Ko D-H, Lee S, Lim H-D, Kim Y-J, Shim H-S, Park H, Ko Y, Park S K, Kwon H J, Kim H, Kim H-T, Min Y-S, Im D, Kang K. Adv. Energy Mater., 2018, 8: 1702661.

[32]

Jung J W, Choi D W, Lee C K, Yoon K R, Yu S, Cheong J Y, Kim C, Cho S H, Park J S, Park Y J, Kim I-D. Nano Energy, 2018, 46: 193.

[33]

Jian Z, Liu P, Li F, He P, Guo X, Chen M, Zhou H. Angew. Chem. Int. Ed., 2014, 53: 442.

[34]

Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J. ACS Nano, 2013, 7: 3532.

[35]

Lei X, Lu S, Ma W, Cao Z, Zhang R, Liu X, Ding Y. Electrochim. Acta, 2018, 280: 308.

[36]

Xie J, Yao X, Cheng Q, Madden I P, Dornath P, Chang C C, Fan W, Wang D. Angew. Chem. Int. Ed., 2015, 54: 4299.

[37]

Shu C, Li B, Zhang B, Su D. ChemSusChem, 2015, 8: 3973.

[38]

Zhao C, Yu C, Liu S, Yang J, Fan X, Huang H, Qiu J. Adv. Funct. Mater., 2015, 25: 6913.

[39]

Wang H, Li J, Li F, Li J, Xu J. Chem. Res. Chinese Universities, 2020, 36(6): 1153.

[40]

Xu J-J, Chang Z-W, Yin Y-B, Zhang X-B. ACS Cent. Sci., 2017, 3: 598.

[41]

Wang H, Min Y, Li P, Yang J, Li J. Electrochim. Acta, 2018, 283: 54.

[42]

Wang H-F, Li J-F, Sun X-X, Xu J-J. Nanoscale, 2019, 11: 11513.

[43]

Sun W, Wang Y, Wu H, Wang Z, Rooney D, Sun K. Chem. Commun., 2017, 53: 8711.

[44]

Chen P, Xu K, Tong Y, Li X, Tao S, Fang Z, Chu W, Wu X, Wu C. Inorg. Chem. Front., 201, 3: 236.

[45]

Kwak W-J, Lau K C, Shin C-D, Amine K, Curtiss L A, Sun Y-K. ACS Nano, 2015, 9: 4129.

[46]

Ran Z, Shu C, Hou Z, Hei P, Yang T, Liang R, Li J, Long J. Electrochim. Acta, 2020, 337: 135795.

[47]

Wei M, Luo Y, Jin C, Sui J, Wang Z, Li C, Yang R. ACS Appl. Energy Mater., 2018, 1: 331.

[48]

Deng Y, Chi B, Tian X, Cui Z, Liu E, Jia Q, Fan W, Wang G, Dang D, Li M, Zang K, Luo J, Hu Y, Liao S, Sun X, Mukerjee S. J. Mater. Chem. A, 2019, 7: 5020.

[49]

Yan Y, He T, Zhao B, Qi K, Liu H, Xia B Y. J. Mater. Chem. A, 2018, 6: 15905.

[50]

Wang N, Sun Q, Yu J. Adv. Mater., 2019, 31: 1803966.

[51]

Liu Y, Li Z, Yu Q, Chen Y, Chai Z, Zhao G, Liu S, Cheong W-C, Pan Y, Zhang Q, Gu L, Zheng L, Wang Y, Lu Y, Wang D, Chen C, Peng Q, Liu Y, Liu L, Chen J, Li Y. J. Am. Chem. Soc., 2019, 141: 9305.

[52]

Li Y, Li L, Yu J. Chem, 2017, 3: 928.

[53]

Lee D J, Lee H, Kim Y J, Park J K, Kim H T. Adv. Mater., 201, 28: 857.

[54]

Xu C, Xu G, Zhang Y, Fang S, Nie P, Wu L, Zhang X. ACS Energy Lett., 2017, 2: 2659.

[55]

Qiao Y, He Y, Wu S, Jiang K, Li X, Guo S, He P, Zhou H. ACS Energy Lett., 2018, 3: 463.

[56]

Kwak W-J, Jung H-G, Aurbach D, Sun Y-K. Adv. Energy Mater., 2017, 7: 1701232.

[57]

Bergner B J, Busche M R, Pinedo R, Berkes B B, Schröder D, Janek J. ACS Appl. Mater. Interfaces, 201, 8: 7756.

[58]

Liu Z, Ma L, Guo L, Peng Z. J. Phys. Chem. Lett., 2018, 9: 5915.

[59]

Li N, Chang Z, Zhong M, Fu Z-X, Luo J, Zhao Y-F, Li G-B, Bu X-H. CCS Chem., 2020, 2: 1297.

[60]

Wang Y F, Song L N, Li F, Wang X X, Li M L, Zou L C, Xu J J. J. Power Sources, 2021, 492: 229575.

[61]

Zhang T, Liao K, He P, Zhou H. Energy Environ. Sci., 201, 9: 1024.

[62]

Elia G A, Bresser D, Reiter J, Oberhumer P, Sun Y K, Scrosati B, Passerini S, Hassoun J. ACS Appl. Mater. Interfaces, 2015, 7: 22638.

[63]

Yang H, Guo C, Naveed A, Lei J, Yang J, Nuli Y, Wang J. Energy Storage Mater., 2018, 14: 199.

[64]

Liu B, Zhang J-G, Xu W. Joule, 2018, 2: 1.

[65]

Chen Y, Luo Y, Zhang H, Qu C, Zhang H, Li X. Small Methods, 2019, 3: 1800551.

[66]

Zhang X, Xie Z, Zhou Z. ChemElectroChem, 2019, 6: 1969.

[67]

Luntz A C, McCloskey B D. Chem. Rev., 2014, 114: 11721.

[68]

Li Q, Zhu S, Lu Y. Adv. Funct. Mater., 2017, 27: 1606422.

[69]

Luo N, Ji G-J, Wang H-F, Li F, Liu Q-C, Xu J-J. ACS Nano, 2020, 14: 3281.

[70]

Huang Z, Ren J, Zhang W, Xie M, Li Y, Sun D, Shen Y, Huang Y. Adv. Mater., 2018, 30: 1803270.

[71]

Yi J, Liu X, Guo S, Zhu K, Xue H, Zhou H. ACS Appl. Mater. Interfaces, 2015, 7: 23798.

[72]

Zhu J, Yang J, Zhou J, Zhang T, Li L, Wang J, Nuli Y. J. Power Sources, 2017, 366: 265.

[73]

Yan K, Lee H-W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y. Nano Lett., 2014, 14: 6016.

[74]

Kozen A C, Lin C-F, Pearse A J, Schroeder M A, Han X, Hu L, Lee S-B, Rubloff G W, Noked M. ACS Nano, 2015, 9: 5884.

[75]

Adair K R, Zhao C, Banis M N, Zhao Y, Li R, Cai M, Sun X. Angew. Chem. Int. Ed., 2019, 58: 15797.

[76]

Kim B G, Kim J-S, Min J, Lee Y-H, Choi J H, Jang M C, Freunberger S A, Choi J W. Adv. Funct. Mater., 201, 26: 1747.

[77]

Xu J J, Liu Q C, Yu Y, Wang J, Yan J M, Zhang X B. Adv. Mater., 2017, 29: 1606552.

[78]

Laino T, Curioni A. Chem. Eur. J., 2012, 18: 3510.

[79]

Bondue C J, Hegemann M, Molls C, Thome E, Baltruschat H. J. Electrochem. Soc., 201, 163: A1765.

[80]

Chen C G, Li L Y, Su J M, Zhang C C, Chen X, Huang T, Yu A S. Electrochim. Acta, 2017, 243: 357.

[81]

Kim D W, Lee D H, Ahn S M, Kim D Y, Suk J, Choi D H, Kang Y K. J. Power Sources, 2017, 347: 186.

[82]

Sharon D, Hirshberg D, Afri M, Frimer A A, Aurbach D. Chem. Commun., 2017, 53: 3269.

[83]

Johnson L, Li C, Liu Z, Chen Y, Freunberger S A, Ashok P C, Praveen B B, Dholakia K, Tarascon J-M, Bruce P G. Nat. Chem., 2014, 6: 1091.

[84]

Mahne N, Schafzahl B, Leypold C, Leypold M, Grumm S, Leitgeb A, Strohmeier G A, Wilkening M, Fontaine O, Kramer D, Slugovc C, Borisov S M, Freunberger S A. Nat. Energy, 2017, 2: 17036.

[85]

Kim B G, Kim S, Lee H, Choi J W. Chem. Mater., 2014, 26: 4757.

[86]

Wang Q, Zheng D, McKinnon M E, Yang X-Q, Qu D. J. Power Sources, 2015, 274: 1005.

[87]

Qiao Y, Wu S, Sun Y, Guo S, Yi J, He P, Zhou H. ACS Energy Lett., 2017, 2: 1869.

[88]

Zhou B, Guo L, Zhang Y, Wang J, Ma L, Zhang W-H, Fu Z, Peng Z. Adv. Mater., 2017, 29: 1701568.

[89]

Kim J H, Woo H S, Jin S J, Lee J S, Kim W, Ryu K, Kim D W. RSC Adv., 2015, 5: 80014.

[90]

Chamaani A, Chawla N, Safa M, El-Zahab B. Electrochim. Acta, 2017, 235: 56.

[91]

Meng N, Lian F, Li Y, Zhao X, Zhang L, Lu S, Li H. ACS Appl. Mater. Interfaces, 2018, 10: 22237.

[92]

Lu Q, Gao Y, Zhao Q, Li J, Wang X, Wang F. J. Power Sources, 2013, 242: 677.

[93]

Sun J, Zhao N, Li Y, Guo X, Feng X, Liu X, Liu Z, Cui G, Zheng H, Gu L, Li H. Sci. Rep., 2017, 7: 41217.

[94]

Zhang S S, Xu K, Read J. J. Power Sources, 2011, 196: 3906.

[95]

Amanchukwu C V, Chang H-H, Gauthier M, Feng S, Batcho T P, Hammond P T. Chem. Mater., 201, 28: 7167.

[96]

Wang J, Yin Y, Liu T, Yang X, Chang Z, Zhang X. Nano Res., 2018, 11: 3434.

[97]

Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough J B. Nano Energy, 2018, 46: 176.

[98]

Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough J B, Yu G. Angew. Chem., Int. Ed., 2018, 57: 2096.

[99]

Li M, Wang X, Li F, Zheng L, Xu J, Yu J. Adv. Mater., 2020, 32: 1907098.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/