Synthesis of SnS2 Ultrathin Nanosheets as Anode Materials for Potassium Ion Batteries

Rong Hu , Yongzheng Fang , Xiaoyu Liu , Kai Zhu , Dianxue Cao , Jin Yi , Guiling Wang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 311 -317.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 311 -317. DOI: 10.1007/s40242-021-0017-x
Article

Synthesis of SnS2 Ultrathin Nanosheets as Anode Materials for Potassium Ion Batteries

Author information +
History +
PDF

Abstract

Potassium(K) ion batteries present their promising application for large-scale energy storage systems with cost-effective characteristic. Unfortunately, the large K ion radius results in sluggish K ion diffusion kinetics and volume expansion of the electrode during the K ion insertion/extraction process. It is a challenge to explore capable anode materials with remarkable K ion storage ability. Herein, we design and prepare SnS2 ultrathin nanosheets via a facile hydrothermal process. When severing as anode materials for K ion batteries with optimized electrolyte, SnS2 presents an improved capacity and rate ability. The capable electrochemical performance is ascribed to the reduced ion diffusion pathway and capacitor-dominated K-ion storage process. In addition, the K ion storage mechanism of SnS2 is investigated by the ex-situ X-ray diffraction technique.

Keywords

SnS2 / Electrolyte / Potassium ion battery / Anode

Cite this article

Download citation ▾
Rong Hu, Yongzheng Fang, Xiaoyu Liu, Kai Zhu, Dianxue Cao, Jin Yi, Guiling Wang. Synthesis of SnS2 Ultrathin Nanosheets as Anode Materials for Potassium Ion Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 311-317 DOI:10.1007/s40242-021-0017-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yao Q, Zhu C. Advanced Functional Materials, 2020, 30: 2005209.

[2]

Ding J, Zhang H, Zhou H, Feng J, Zheng X, Zhong C, Paek E, Hu W, Mitlin D. Advanced Materials, 2019, 31: 1970217.

[3]

Rajagopalan R, Tang Y, Ji X, Jia C, Wang H. Advanced Functional Materials, 2020, 30: 1909486.

[4]

Liang Y, Luo C, Wang F, Hou S, Liou S-C, Qing T, Li Q, Zheng J, Cui C, Wang C. Advanced Energy Materials, 2019, 9: 1802986.

[5]

Ju Z, Zhang S, Xing Z, Zhuang Q, Qiang Y, Qian Y. ACS Applied Materials & Interfaces, 201, 8: 20682.

[6]

Ji Y-R, Weng S-T, Li X-Y, Zhang Q-H, Gu L. Rare Metals, 2020, 39: 205.

[7]

Wang K, Pei S, He Z, Huang L-A, Zhu S, Guo J, Shao H, Wang J. Chemical Engineering Journal, 2019, 356: 272.

[8]

Wang Y-Y, Zhao Z-W, Liu Y, Hou L-R, Yuan C-Z. Rare Metals, 2020, 39: 1082.

[9]

Bai P, Jiang K, Hang X, Xu J, Guo S, Zhou H. ACS Applied Materials & Interfaces, 2020, 12: 10490.

[10]

Qi S-H, Deng J-W, Zhang W-C, Feng Y-Z, Ma J-M. Rare Metals, 2020, 39: 970.

[11]

Zhang W, Ming J, Zhao W, Dong X, Hedhili M N, Costa P M F J, Alshareef H N. Advanced Functional Materials, 2019, 29: 1903641.

[12]

Lei K-X, Wang J, Chen C, Li S-Y, Wang S-W, Zheng S-J, Li F-J. Rare Metals, 2020, 39: 989.

[13]

Zeng S, Zhou X, Wang B, Feng Y, Xu R, Zhang H, Peng S, Yu Y. Journal of Materials Chemistry A, 2019, 7: 15774.

[14]

Liao J, Hu Q, Mu J, He X, Wang S, Jiemin D, Chen C. Chemical Communications, 2019, 55: 13916.

[15]

Bin D-S, Duan S-Y, Lin X-J, Liu L, Liu Y, Xu Y-S, Sun Y-G, Tao X-S, Cao A-M, Wan L-J. Nano Energy, 2019, 60: 912.

[16]

Wang Y, Zhou J, Wang Z, Zhao L, Li P, Yang Y, Yang C, Huang H, Guo S. Advanced Energy Materials, 2017, 8: 1701648.

[17]

Zhao J, Zhang Y, Wang Y, Li H, Peng Y. Journal of Energy Chemistry, 2018, 27: 1536.

[18]

Chen Q, Sun S, Zhai T, Yang M, Zhao X, Xia H. Advanced Energy Materials, 2018, 8: 180005.

[19]

Wang X, Li X, Li Q, Li H, Xu J, Wang H, Zhao G, Lu L, Lin X, Li H, Li S. Nano-Micro Letters, 2018, 10: 46.

[20]

Fang L, Xu J, Sun S, Lin B, Guo Q, Luo D, Xia H. Small, 2019, 15: 1804806.

[21]

Sun Q, Li D, Dai L, Liang Z, Ci L. Small, 2020, 16: 2005023.

[22]

Zhong Y, Liu D, Wang L-T, Zhu H-G, Hong G. Journal of Colloid and Interface Science, 2020, 561: 593.

[23]

Jana M, Xu R, Cheng X-B, Yeon J S, Park J M, Huang J-Q, Zhang Q, Park H S. Energy & Environmental Science, 2020, 13: 1049.

[24]

Lv X, Wei W, Huang B, Dai Y. Journal of Materials Chemistry A, 2019, 7: 2165.

[25]

Okoshi M, Yamada Y, Komaba S, Yamada A, Nakai H. Journal of the Electrochemical Society, 201, 164: A54.

[26]

Zhang J, Cao Z, Zhou L, Park G-T, Cavallo L, Wang L, Alshareef H N, Sun Y-K, Ming J. ACS Energy Letters, 2020, 5: 3124.

[27]

Wang H, Zhai D, Kang F. Energy & Environmental Science, 2020, 13: 4583.

[28]

Liu W, Liu P, Mitlin D. Advanced Energy Materials, 2020, 10: 2002297.

[29]

Shi X, Yang Z, Liu Y, Tang Y, Liu Y, Gao S, Yang Y, Chen X, Zhong Y, Wu Z, Guo X, Zhong B. ChemElectroChem, 2020, 7: 4484.

[30]

Xia J, Jiang K, Xie J, Guo S, Liu L, Zhang Y, Nie S, Yuan Y, Yan H, Wang X. Chemical Engineering Journal, 2019, 359: 1244.

[31]

Wang J, Huang J, Huang S, Notohara H, Urita K, Moriguchi I, Wei M. ACS Sustainable Chemistry & Engineering, 2020, 8: 9519.

[32]

Liu Y, Kang H, Jiao L, Chen C, Cao K, Wang Y, Yuan H. Nanoscale, 2015, 7: 1325.

[33]

Fang S, Shen L, Li S, Kim G-T, Bresser D, Zhang H, Zhang X, Maier J, Passerini S. ACS Nano, 2019, 13: 9511.

[34]

Hu R, Zhu K, Ye K, Yan J, Wang Q, Cao D, Wang G. Applied Surface Science, 2021, 536: 147832.

[35]

Yang C, Lv F, Zhang Y, Wen J, Dong K, Su H, Lai F, Qian G, Wang W, Hilger A, Xu Y, Zhu Y, Deng Y, Hu W, Manke I, Chen Y. Advanced Energy Materials, 2019, 9: 1902674.

[36]

Suo G, Zhang J, Li D, Yu Q, He M, Feng L, Hou X, Yang Y, Ye X, Zhang L, Wang W. Journal of Colloid and Interface Science, 2020, 566: 427.

[37]

Tang Y, Zhao Z, Hao X, Wang Y, Liu Y, Hou Y, Yang Q, Wang X, Qiu J. Journal of Materials Chemistry A, 2017, 5: 13591.

[38]

Lei Y, Han D, Dong J, Qin L, Li X, Zhai D, Li B, Wu Y, Kang F. Energy Storage Materials, 2020, 24: 319.

[39]

Li L, Fang C, Wei W, Zhang L, Ye Z, He G, Huang Y. Nano Energy, 2020, 72: 104651.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/