Design, Ultrasonic-assisted Synthesis and Evaluation In vitro Antimicrobial Activity of Bis-isoxazole Derivatives Bearing Chloro-pyridinyl Group

Fan Feng , Jing Li , Zhihui Zhang , Jiaxu Fu , Yumin Zhang , Qiang Gu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 668 -673.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 668 -673. DOI: 10.1007/s40242-021-0009-x
Article

Design, Ultrasonic-assisted Synthesis and Evaluation In vitro Antimicrobial Activity of Bis-isoxazole Derivatives Bearing Chloro-pyridinyl Group

Author information +
History +
PDF

Abstract

An ultrasonic-assisted synthesis of bis-isoxazole derivatives was developed. Eight 3-(6-chloropyridin-3-yl)-5-{[(3-arylisoxazol-5-yl)methoxy]methyl}isoxazoles were synthesized by 1,3-dipolar cycloaddition reaction between substituted isoxazolyl alkyne compounds and 6-chloro-N-hydroxynicotinimidoyl chloride. The structures of the synthesized compounds were confirmed by HRMS, FTIR, 1H and 13C NMR spectroscopy. Wherein, the antifungal and antibacterial activities of target compounds were tested. The synthesized compounds 6a and 6h exhibited better antifungal activity in comparison with the standard drug itraconazole. The minimum inhibitory concentrations(MICs) of both compound 6a and compound 6h were both 4 µg/mL against Candida albicans ATCC 10231.

Keywords

Ultrasonic-assisted / Bis-isoxazole / 1,3-Dipolar cycloaddition / Antimicrobial activity

Cite this article

Download citation ▾
Fan Feng, Jing Li, Zhihui Zhang, Jiaxu Fu, Yumin Zhang, Qiang Gu. Design, Ultrasonic-assisted Synthesis and Evaluation In vitro Antimicrobial Activity of Bis-isoxazole Derivatives Bearing Chloro-pyridinyl Group. Chemical Research in Chinese Universities, 2021, 37(3): 668-673 DOI:10.1007/s40242-021-0009-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu J, Mo J, Lin H Z, Chen Y, Sun H P. Bioorgan. Med. Chem., 2018, 26: 3065.

[2]

Brown G D, Denning D W, Gow N A, Levitz S M, Netea M G, White T C. Sci. Transl. Med., 2012, 4: 165.

[3]

Lee Y., Puumala E., Robbins N., Cowen L. E., Chem. Rev., 2020, DOI: https://doi.org/10.1021/acs.chemrev.0c00199

[4]

Haque F, Alfatah M, Ganesan K, Bhattacharyya M S. Sci. Rep-UK, 201, 6: 23575.

[5]

Li S, Shi H, Chang W, Li Y, Zhang M, Qiao Y, Lou H. Bioorgan. Med. Chem., 2017, 25: 5764.

[6]

Rajendran R, Borghi E, Falleni M, Perdoni F, Tosi D, Lappin D F, Nile C. Eukaryot. Cell, 2015, 14: 834.

[7]

Pairas G N, Perperopoulou F, Tsoungas P G, Varvounis G. ChemMedChem, 2017, 12: 408.

[8]

Dravyakar B R, Kawade D P, Khedekar P B, Bhusari K P. Cheminform, 2009, 40: 1559.

[9]

Lopes E F, Penteado F, Thurow S, Pinz M, Reis A S, Wilhelm E A, Luchese C, Barcellos T, Dalberto B, Alves D, Silva M S, Lenardão E J. J. Org. Chem., 2019, 84(19): 12452.

[10]

Jadhav S B, Shastri R A, Gaikwad K V, Gaikwad S V. Journal of Chemistry, 2009, 6: S183.

[11]

Barbachyn M R, Cleek G J, Dolak L A, Garmon S A, Morris J, Seest E P, Thomas R C, Toops D S, Watt W, Wishka D G, Ford C W, Zurenko G E, Hamel J C, Schaadt R D, Stapert D, Yagi B H, Adams W J, Friis J M, Slatter J G, Sams J P, Oien N L, Zaya M J, Wienkers L C, Wynalda M A. J. Med. Chem., 2003, 46(2): 284.

[12]

Kumar A, Maurya R A, Sharma S, Ahmad P, Singh A B, Tamrakar A K, Srivastava A K. Bioorgan. Med. Chem., 2009, 17: 5285.

[13]

Karabasanagouda A, Adhikari A V, Girisha M. Cheminform, 2009, 40: 430.

[14]

Li Z, Liu N, Tu J, Ji C J, Han G Y, Sheng C Q. ACS Infect. Dis., 2019, 5: 1376.

[15]

Hua X W, Liu C, Zhou S, Chen M G, Xiong L X, Li Y Q, Li Z M. Chem. Res. Chinese Universities, 2017, 33(6): 882.

[16]

Yang H L, Xu G X, Pei Y Z. Chem. Res. Chinese Universities, 2017, 33(1): 61.

[17]

Zhang D W, Lin F, Li B C, Liu H W, Zhao T Q, Zhang Y M, Gu Q. Chem. Pap., 2015, 69: 1500.

[18]

Quilico A, d’Alcontres G S, Grünanger P. Nature, 1950, 166: 226.

[19]

Minakata S, Okumura S, Nagamachi T, Takeda Y. Org. Lett., 2011, 13: 2966.

[20]

Yoshimura A, Middleton K R, Todora A D, Kastern B J, Kosk S R, Maskaev A V, Zhdankin V V. Org. Lett., 2013, 15: 4010.

[21]

Stevens R V. Tetrahedron, 197, 32: 1599.

[22]

Katritzky A R, Button M A, Denisenko S N. J. Heterocycl. Chem., 2000, 37: 1505.

[23]

Souza F B, Pimenta D C, Stefani H A. Tetrahedron Lett., 201, 57: 1592.

[24]

Driowya M, Puissant A, Robert G, Auberger P, Benhida R, Bougrin K. Ultrason. Sonochem., 2012, 19: 1132.

[25]

Shi Y P, Jiang K, Zheng R, Fu J X, Yan L Q, Gu Q, Zhang Y M, Lin F. Chem. Biodivers., 2019, 16: e1800510.

[26]

Desai N C, Pandya D D, Kotadiya G M, Desai P. Med. Chem. Res., 2014, 23: 1474.

[27]

Chhajed S S, Upasani C D, Jagdale S B. J. Pharm. Res., 2010, 3: 1250.

[28]

Li J, Liu H W, Meng F W, Yan L Q, Shi Y P, Zhang Y M, Gu Q. Chem. Res. Chinese Universities, 2018, 34(2): 197.

[29]

Clinical and Laboratory Standards Institute, NCCLS Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, Proposed Standard, NCCLS Document M38-A, Philadelphia, USA, 1998, 18, 1

[30]

Yan L. Q., Fu J. X., Li S., Zhang J. L., Wang S., Gu Q., Zhang Y. M., Lin F., Chem. Res. Chinese Universities, 2021, DOI: https://doi.org/10.1007/s40242-020-0274-0

[31]

Gagneux A R, Häfliger F, Meier R, Eugster C H. Tetrahedron Lett., 1965, 6: 2081.

[32]

Lunn M L, Hogner A, Stensbøl T B, Gouaux E, Egebjerg J, Kastrup J S. J. Med. Chem., 2003, 46: 872.

[33]

Murugesan N, Gu Z, Stein P D, Spergel S, Mathur A, Leith L, Marino A. J. Med. Chem., 2000, 43: 3111.

[34]

Murugesan N, Gu Z, Fadnis L, Tellew J E, Baska R A F, Yang Y, Humphreys W G. J. Med. Chem., 2005, 48: 171.

[35]

Pirrung M C, Tumey L N, Raetz C R, Jackman J E, Snehalatha K, McClerren A L, Rusche K M. J. Med. Chem., 2002, 45: 4359.

[36]

Renard J F, Arslan D, Garbacki N, Pirotte B, de Leval X. J. Med. Chem., 2009, 52: 5864.

[37]

Liu M C, Lin T S, Cory J G, Cory A H, Sartorelli A C. J. Med. Chem., 201, 39: 2586.

[38]

Li G, Qian X, Cui J, Huang Q, Zhang R, Guan H. J. Agr. Food Chem., 200, 54: 125.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/