Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries

Li Liu , Dechao Zhang , Xijun Xu , Zhengbo Liu , Jun Liu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 210 -231.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 210 -231. DOI: 10.1007/s40242-021-0007-z
Review

Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries

Author information +
History +
PDF

Abstract

All-solid-state lithium batteries are considered to be a new battery system with great development potential and application prospects due to the advantages of high energy density and high security. As a key component of all-solid-state lithium batteries, the development of solid-state electrolytes has received extensive attention in recent years, but most solid electrolytes still exhibit problems, such as low ion conductivity and poor interface compatibility. The design of composite solid-state electrolyte materials with both excellent electrochemical and mechanical properties is an effective way to develop all-solid-state lithium batteries. This review introduces different types of pure component solid electrolytes and analyzes their respective advantages and characteristics firstly. Furthermore, the research progress of composite electrolytes in preparation method, ionic conduction, suppression of lithium dendrites, and the improvement of electrochemical performances are reviewed from the perspective of composite electrolyte structure design, which is to meet different performance requirements. And the future development direction and trend of composite electrolytes are prospected.

Keywords

All-solid-state lithium battery / Solid electrolyte / Composite solid electrolyte

Cite this article

Download citation ▾
Li Liu, Dechao Zhang, Xijun Xu, Zhengbo Liu, Jun Liu. Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 210-231 DOI:10.1007/s40242-021-0007-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2: 16.

[2]

Zhou T, Shen J, Wang Z, Liu J, Hu R, Ouyang L, Feng Y, Liu H, Yu Y, Zhu M. Adv. Funct. Mater., 2020, 30: 1909159.

[3]

Liu J, Xu X, Hu R, Yang L, Zhu M. Adv. Energy Mater., 201, 6: 1600256.

[4]

Shen J, Xu X, Liu J, Liu Z, Li F, Hu R, Liu J, Hou X, Feng Y, Yu Y. ACS Nano, 2019, 13: 8996.

[5]

Xu X, Liu J, Liu Z, Wang Z, Hu R, Liu J, Ouyang L, Zhu M. Small, 2018, 14: 1800793.

[6]

Zhang D, Xu X, Qin Y, Ji S, Huo Y, Wang Z, Liu Z, Shen J, Liu J. Chem. Eur. J., 2020, 26: 1720.

[7]

Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Adv. Mater., 2019, 31: 42.

[8]

Zhao Q, Stalin S, Zhao C Z, Archer L A. Nat. Rev. Mater., 2020, 5: 229.

[9]

Xu X, Liu J, Liu Z, Shen J, Hu R, Liu J, Ouyang L, Zhang L, Zhu M. ACS Nano, 2017, 11: 9033.

[10]

Yang X F, Luo J, Sun X L. Chem. Soc. Rev., 2020, 49: 2140.

[11]

Wang Z, Xu X, Ji S, Liu Z, Zhang D, Shen J, Liu J. J. Mater. Sci. Technol., 2020, 55: 56.

[12]

Yang X, Adair K R, Gao X, Sun X. Energy Environ. Sci., 2021.

[13]

Wu F X, Maier J, Yu Y. Chem. Soc. Rev., 2020, 49: 1569.

[14]

Janek J, Zeier W G. Nat. Energy, 201, 1: 4.

[15]

Hu Y S. Nat. Energy, 201, 1: 2.

[16]

Judez X, Eshetu G G, Li C M, Rodriguez-Martinez L M, Zhang H, Armand M. Joule, 2018, 2: 2208.

[17]

Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N, Wang H, Wang C S. Nat. Energy, 2019, 4: 187.

[18]

Cheng Z, Liu T, Zhao B, Shen F, Jin H, Han X. Energy Storage Mater., 2021, 34: 388.

[19]

Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G X. Chem, 2019, 5: 2326.

[20]

Gao Z H, Sun H B, Fu L, Ye F L, Zhang Y, Luo W, Huang Y H. Adv. Mater., 2018, 30: 27.

[21]

Umeshbabu E, Zheng B, Yang Y. Electrochem. Energy Rev., 2019, 2: 199.

[22]

Yao P C, Zhu B, Zhai H W, Liao X B, Zhu Y X, Xu W H, Cheng Q, Jayyosi C, Li Z, Zhu J, Myers K M, Chen X, Yang Y. Nano Lett., 2018, 18: 6113.

[23]

Shen F Y, Dixit M B, Xiao X H, Hatzell K B. ACS Energy Lett., 2018, 3: 1056.

[24]

Fu K K, Gong Y H, Liu B Y, Zhu Y Z, Xu S M, Yao Y G, Luo W, Wang C W, Lacey S D, Dai J Q, Chen Y N, Mo Y F, Wachsman E, Hu L B. Sci. Adv., 2017, 3: 11.

[25]

Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y. Chem. Rev., 201, 116: 140.

[26]

Long L, Wang S, Xiao M, Meng Y. J. Mater. Chem. A, 201, 4: 10038.

[27]

Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H. Adv. Sci., 2020, 7: 22.

[28]

Liu X Y, Li X R, Li H X, Wu H B. Chem.-Eur. J., 2018, 24: 18293.

[29]

Cussen E J. Chem. Commun., 2006 412.

[30]

Rettenwander D, Blaha P, Laskowski R, Schwarz K, Bottke P, Wilkening M, Geiger C A, Amthauer G. Chem. Mater., 2014, 26: 2617.

[31]

Murugan R, Thangadurai V, Weppner W. Angew. Chem. Int. Ed., 2007, 46: 7778.

[32]

Rettenwander D, Redhammer G, Preishuber-Pflugl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff M M, Wilkening M, Fleig J, Amthauer G. Chem. Mater., 201, 28: 2384.

[33]

Jalem R, Rushton M J D, Manalastas W, Nakayama M, Kasuga T, Kilner J A, Grimes R W. Chem. Mater., 2015, 27: 2821.

[34]

Han F D, Zhu Y Z, He X F, Mo Y F, Wang C S. Adv. Energy Mater., 201, 6: 9.

[35]

Ni J E, Case E D, Sakamoto J S, Rangasamy E, Wolfenstine J B. J. Mater. Sci., 2012, 47: 7978.

[36]

Yu S, Schmidt R D, Garcia-Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J. Chem. Mater., 201, 28: 197.

[37]

Guo S, Sun Y, Cao A. Chem. Res. Chinese Universities, 2020, 36(3): 329.

[38]

Park K, Yu B C, Jung J W, Li Y T, Zhou W D, Gao H C, Son S, Goodenough J B. Chem. Mater., 201, 28: 8051.

[39]

Ren Y, Shen Y, Lin Y, Nan C-W. Electrochem. Commun., 2015, 57: 27.

[40]

Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y-M. Adv. Energy Mater., 2017, 7: 1701003.

[41]

Asl N M, Keith J, Lim C, Zhu L, Kim Y. Electrochim. Acta, 2012, 79: 8.

[42]

Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull.(USA), 197, 11: 203.

[43]

Kotobuki M, Koishi M. Ceram. Int., 2013, 39: 4645.

[44]

Epp V, Ma Q L, Hammer E M, Tietz F, Wilkening M. Phys. Chem. Chem. Phys., 2015, 17: 32115.

[45]

Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair K R, Li R, Zhang C, Liu J, Kuo L-Y, Hu Y, Sham T-K, Zhang L, Yang R, Lu S, Song X, Sun X. ACS Appl. Mater. Interfaces, 2018, 10: 31240.

[46]

Xu X, Wen Z, Wu X, Yang X, Gu Z. Journal of the American Ceramic Society, 2007, 90: 2802.

[47]

Kotobuki M, Munakata H, Kanamura K. J. Power Sources, 2011, 196: 6947.

[48]

Zhang Q F, Schmidt N, Lan J L, Kim W W, Cao G Z. Chem. Commun., 2014, 50: 5593.

[49]

Xiong Y L, Tao H Z, Zhao J A, Cheng H, Zhao X J. J. Alloy. Compd., 2011, 509: 1910.

[50]

Harada Y, Ishigaki T, Kawai H, Kuwano J. Solid State Ionics, 1998, 108: 407.

[51]

Harada Y, Hirakoso Y, Kawai H, Kuwano J. Solid State Ionics, 1999, 121: 245.

[52]

Geng H X, Mei A, Lin Y H, Nan C W. Mater. Sci. Eng. B: Adv. Funct. Solid-State Mater., 2009, 164: 91.

[53]

Mei A, Wang X L, Feng Y C, Zhao S J, Li G J, Geng H X, Lin Y H, Nan C W. Solid State Ionics, 2008, 179: 2255.

[54]

Mei A, Wang X L, Lan J L, Feng Y C, Geng H X, Lin Y H, Nan C W. Electrochim. Acta, 2010, 55: 2958.

[55]

Stramare S, Thangadurai V, Weppner W. Chem. Mater., 2003, 15: 3974.

[56]

Liu Y, He P, Zhou H. Adv. Energy Mater., 2018, 8: 1701602.

[57]

Zarabian M, Bartolini M, Pereira-Almao P, Thangadurai V. J. Electrochem. Soc., 2017, 164: A1133.

[58]

Kobayashi Y, Miyashiro H, Takeuchi T, Shigemura H, Balakrishnan N, Tabuchi M, Kageyama H, Iwahori T. Solid State Ionics, 2002, 152: 137.

[59]

Wen J Y, Huang Y, Duan J, Wu Y M, Luo W, Zhou L H, Hu C C, Huang L Q, Zheng X Y, Yang W J, Wen Z Y, Huang Y H. ACS Nano, 2019, 13: 14549.

[60]

Han X G, Gong Y H, Fu K, He X F, Hitz G T, Dai J Q, Pearse A, Liu B Y, Wang H, Rublo G, Mo Y F, Thangadurai V, Wachsman E D, Hu L B. Nat. Mater., 2017, 16: 572.

[61]

Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T. J. Power Sources, 2013, 238: 53.

[62]

Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C. Joule, 2018, 2: 497.

[63]

Van den Broek J, Afyon S, Rupp J L M. Adv. Energy Mater., 201, 6: 11.

[64]

Koerver R, Zhang W B, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G, Janek J. Energy Environ. Sci., 2018, 11: 2142.

[65]

Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwa J P, Wang C S, Xu X X. Adv. Energy Mater., 2017, 7: 9.

[66]

Kanno R, Hata T, Kawamoto Y, Irie M. Solid State Ionics, 2000, 130: 97.

[67]

Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10: 682.

[68]

Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. Nat. Energy, 201, 1: 7.

[69]

Komiya R, Hayashi A, Morimoto H, Tatsumisago M, Minami T. Solid State Ionics, 2001, 140: 83.

[70]

Ohtomo T, Hayashi A, Tatsumisago M, Tsuchida Y, Hama S, Kawamoto K. J. Power Sources, 2013, 233: 231.

[71]

Hayashi A, Hama S, Minami T, Tatsumisago M. Electrochem. Commun., 2003, 5: 111.

[72]

Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. Adv. Mater., 2005, 17: 918.

[73]

Ujiie S, Hayashi A, Tatsumisago M. Solid State Ionics, 2012, 211: 42.

[74]

Ujiie S, Inagaki T, Hayashi A, Tatsumisago M. Solid State Ionics, 2014, 263: 57.

[75]

Kanno R, Murayama M. J. Electrochem. Soc., 2001, 148: A742.

[76]

Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. J. Mater. Sci., 2013, 48: 4137.

[77]

Han F, Zhu Y, He X, Mo Y, Wang C. Adv. Energy Mater., 201, 6: 1501590.

[78]

Richards W D, Miara L J, Wang Y, Kim J C, Ceder G. Chem. Mater., 201, 28: 266.

[79]

Haruyama J, Sodeyama K, Han L Y, Takada K, Tateyama Y. Chem. Mater., 2014, 26: 4248.

[80]

Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H. J. Electrochem. Soc., 2012, 159: A1120.

[81]

Wenzel S, Randau S, Leichtweiss T, Weber D A, Sann J, Zeier W G, Janek J. Chem. Mater., 201, 28: 2400.

[82]

Nagao M, Hayashi A, Tatsumisago M. Electrochemistry, 2012, 80: 734.

[83]

Xu R C, Han F D, Ji X, Fan X L, Tu J P, Wang C S. Nano Energy, 2018, 53: 958.

[84]

Han F D, Yue J, Zhu X Y, Wang C S. Adv. Energy Mater., 2018, 8: 6.

[85]

Wang C H, Zhao Y, Sun Q, Li X, Liu Y L, Liang J W, Li X N, Lin X T, Li R Y, Adair K R, Zhang L, Yang R, Lu S G, Sun X L. Nano Energy, 2018, 53: 168.

[86]

Koerver R, Aygun I, Leichtweiss T, Dietrich C, Zhang W B, Binder J O, Hartmann P, Zeier W G, Janek J. Chem. Mater., 2017, 29: 5574.

[87]

Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horizons, 201, 3: 487.

[88]

Fenton D E, Parker J M, Wright P V. Polymer, 1973, 14: 589.

[89]

Wright P V. Electrochim. Acta, 1998, 43: 1137.

[90]

Meyer W H. Adv. Mater., 1998, 10: 439.

[91]

Marceau H, Kim C-S, Paolella A, Ladouceur S, Lagacé M, Chaker M, Vijh A, Guerfi A, Julien C M, Mauger A, Armand M, Hovington P, Zaghib K. J. Power Sources, 201, 319: 247.

[92]

Tominaga Y, Yamazaki K. Chem. Commun., 2014, 50: 4448.

[93]

Zewde B W, Carbone L, Greenbaum S, Hassoun J. Solid State Ionics, 2018, 317: 97.

[94]

Fan R, Liu C, He K Q, Cheng S H S, Chen D Z, Liao C Z, Li R K Y, Tang J N, Lu Z G. ACS Appl. Mater. Interfaces, 2020, 12: 7222.

[95]

Pan Q W, Barbash D, Smith D M, Qi H, Gleeson S E, Li C Y. Adv. Energy Mater., 2017, 7: 10.

[96]

Ji X X, Zeng H H, Gong X J, Tsai F C, Jiang T, Li R K Y, Shi H C, Luan S F, Shi D. J. Mater. Chem. A, 2017, 5: 24444.

[97]

Guo Q P, Han Y, Wang H, Xiong S Z, Li Y J, Liu S K, Xie K. ACS Appl. Mater. Interfaces, 2017, 9: 41837.

[98]

Hu H, Cheng H Y, Liu Z F, Li G J, Zhu Q C, Yu Y. Nano Lett., 2015, 15: 5116.

[99]

Ahmad S, Saxena T K, Ahmad S, Agnihotry S A. J. Power Sources, 200, 159: 205.

[100]

Martins P, Lopes A C, Lanceros-Mendez S. Prog. Polym. Sci., 2014, 39: 683.

[101]

Wang S H, Kuo P L, Hsieh C T, Teng H S. ACS Appl. Mater. Interfaces, 2014, 6: 19360.

[102]

Zhang Q Q, Liu K, Ding F, Liu X J. Nano Res., 2017, 10: 4139.

[103]

Sengwa R J, Dhatarwal P, Choudhary S. Electrochim. Acta, 2014, 142: 359.

[104]

Young N P, Devaux D, Khurana R, Coates G W, Balsara N P. Solid State Ionics, 2014, 263: 87.

[105]

Porcarelli L, Gerbaldi C, Bella F, Nair J R. Sci. Rep., 201, 6: 14.

[106]

Schauser N S, Harry K J, Parkinson D Y, Watanabe H, Balsara N P. J. Electrochem. Soc., 2014, 162: A398.

[107]

Xia Y, Fujieda T, Tatsumi K, Prosini P P, Sakai T. J. Power Sources, 2001, 92: 234.

[108]

Ma J, Liu Z L, Chen B B, Wang L L, Yue L P, Liu H S, Zhang J J, Liu Z H, Cui G L. J. Electrochem. Soc., 2017, 164: A3454.

[109]

Manthiram A, Yu X, Wang S. Nat. Rev. Mater., 2017, 2: 16103.

[110]

Fan L Z, Nan C W, Zhao S J. Solid State Ionics, 2003, 164: 81.

[111]

Wieczorek W, Zalewska A, Raducha D, Florjanczyk Z, Stevens J R. J. Phys. Chem. B, 1998, 102: 352.

[112]

Yang H, Bright J, Chen B H, Zheng P, Gao X F, Liu B T, Kasani S J, Zhang X W, Wu N Q. J. Mater. Chem. A, 2020, 8: 7261.

[113]

Fu K, Gong Y H, Dai J Q, Gong A, Han X G, Yao Y G, Wang C W, Wang Y B, Chen Y N, Yan C Y, Li Y J, Wachsman E D, Hu L B. PNAS, 201, 113: 7094.

[114]

Zhu Y H, Cao J, Chen H, Yu Q P, Li B H. J. Mater. Chem. A, 2019, 7: 6832.

[115]

Cui Y, Wan J Y, Ye Y S, Liu K, Chou L Y. Nano Lett., 2020, 20: 1686.

[116]

Rangasamy E, Sahu G, Keum J K, Rondinone A J, Dudney N J, Liang C D. J. Mater. Chem. A, 2014, 2: 4111.

[117]

Jiang T L, He P G, Wang G X, Shen Y, Nan C W, Fan L Z. Adv. Energy Mater., 2020, 10: 10.

[118]

Lin D C, Liu W, Liu Y Y, Lee H R, Hsu P C, Liu K, Cui Y. Nano Lett., 201, 16: 459.

[119]

Galven C, Fourquet J-L, Crosnier-Lopez M-P, Le Berre F. Chem. Mater., 2011, 23: 1892.

[120]

Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C. Energy Environ. Sci., 2014, 7: 1053.

[121]

Zhang D, Xu X, Huang X, Shi Z, Wang Z, Liu Z, Hu R, Liu J, Zhu M. J. Mater. Chem. A, 2020, 8: 18043.

[122]

Jiang Z Y, Wang S Q, Chen X Z, Yang W L, Yao X, Hu X C, Han Q Y, Wang H H. Adv. Mater., 2020, 32: 7.

[123]

Zha W P, Xu Y H, Chen F, Shen Q, Zhang L M. Solid State Ionics, 2019, 330: 54.

[124]

Zhang D, Xu X, Ji S, Wang Z, Liu Z, Shen J, Hu R, Liu J, Zhu M. ACS Appl. Mater. Interfaces, 2020, 12: 21586.

[125]

Jiang Z, Wang S, Chen X, Yang W, Yao X, Hu X, Han Q, Wang H. Adv. Mater., 2020, 32: 1906221.

[126]

Zaman W, Hortance N, Dixit M B, De Andrade V, Hatzell K B. J. Mater. Chem. A, 2019, 7: 23914.

[127]

Zhang J, Zhao N, Zhang M, Li Y, Chu P K, Guo X, Di Z, Wang X, Li H. Nano Energy, 201, 28: 447.

[128]

Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Appl. Mater. Interfaces, 2017, 9: 21773.

[129]

Golodnitsky D, Strauss E, Peled E, Greenbaum S. J. Electrochem. Soc., 2015, 162: A2551.

[130]

Zhai H W, Xu P Y, Ning M Q, Cheng Q, Mandal J, Yang Y. Nano Lett., 2017, 17: 3182.

[131]

Li A J, Liao X B, Zhang H R, Shi L, Wang P Y, Cheng Q, Borovilas J, Li Z Y, Huang W L, Fu Z X, Dontigny M, Zaghib K, Myers K, Chuan X Y, Chen X, Yang Y. Adv. Mater., 2020, 32: 9.

[132]

Alarco P J, Abu-Lebdeh Y, Abouimrane A, Armand M. Nat. Mater., 2004, 3: 476.

[133]

Jung Y C, Park M S, Doh C H, Kim D W. Electrochim. Acta, 201, 218: 271.

[134]

Xiong S Z, Liu Y Y, Jankowski P, Liu Q, Nitze F, Xie K, Song J X, Matic A. Adv. Funct. Mater., 2020, 30: 10.

[135]

Kim S K, Jung Y C, Kim D H, Shin W C, Ue M, Kim D W. J. Electrochem. Soc., 201, 163: A974.

[136]

Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B. Chem. Soc. Rev., 2017, 46: 797.

[137]

Mindemark J, Lacey M J, Bowden T, Brandell D. Prog. Polym. Sci., 2018, 81: 114.

[138]

Xu H H, Chien P H, Shi J J, Li Y T, Wu N, Liu Y Y, Hu Y Y, Goodenough J B. PNAS, 2019, 116: 18815.

[139]

Huo H Y, Wu B, Zhang T, Zheng X S, Ge L, Xu T W, Guo X X, Sun X L. Energy Storage Mater., 2019, 18: 59.

[140]

Li Z, Sha W X, Guo X. ACS Appl. Mater. Interfaces, 2019, 11: 26920.

[141]

Liu Y, Lee J Y, Hong L. J. Power Sources, 2004, 129: 303.

[142]

Sun J Q, Yao X M, Li Y G, Zhang Q H, Hou C Y, Shi Q W, Wang H Z. Adv. Energy Mater., 2020, 10: 11.

[143]

Hu J K, He P G, Zhang B C, Wang B Y, Fan L Z. Energy Storage Mater., 2020, 26: 283.

[144]

Zhang X, Liu T, Zhang S F, Huang X, Xu B Q, Lin Y H, Xu B, Li L L, Nan C W, Shen Y. J. Am. Chem. Soc., 2017, 139: 13779.

[145]

Kim S, Jung C, Kim H, Thomas-Alyea K E, Yoon G, Kim B, Badding M E, Song Z, Chang J, Kim J, Im D, Kang K. Adv. Energy Mater., 2020, 10: 11.

[146]

Wang J, Huang G, Yan J-M, Ma J-L, Liu T, Shi M-M, Yu Y, Zhang M-M, Tang J-L, Zhang X-B. Natl. Sci. Rev., 2021, 8: 150.

[147]

Li Y, Cao D, Arnold W, Ren Y, Liu C, Jasinski J B, Druffel T, Cao Y, Zhu H, Wang H. Energy Storage Mater., 2020, 31: 344.

[148]

Li Z, Liu Z-W, Mu Z-J, Cao C, Li Z, Wang T-X, Li Y, Ding X, Han B-H, Feng W. Mater. Chem. Front., 2020, 4: 1164.

[149]

Zhao J, Yang M, Yang N, Wang J, Wang D. Chem. Res. Chinese Universities, 2020, 36(3): 313.

[150]

Yang X F, Jiang M, Gao X J, Bao D, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C T, Liang J W, Li W H, Li J J, Liu Y, Huang H, Zhang L, Lu S G, Lu Q W, Li R Y, Singh C V, Sun X L. Energy Environ. Sci., 2020, 13: 1318.

[151]

Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J. J. Am. Chem. Soc., 2019, 141: 9165.

[152]

Zhang Z H, Chen S J, Yao X Y, Cui P, Duan J, Luo W, Huang Y H, Xu X X. Energy Storage Mater., 2020, 24: 714.

[153]

Li Z Y, Li A J, Zhang H R, Lin R Q, Jin T W, Cheng Q, Xiao X H, Lee W K, Ge M Y, Zhang H J, Zangiabadi A, Waluyo I, Hunt A, Zhai H W, Borovilas J J, Wang P Y, Yang X Q, Chuan X Y, Yang Y. Nano Energy, 2020, 72: 8.

[154]

Sheng O W, Jin C B, Luo J M, Yuan H D, Huang H, Gan Y P, Zhang J, Xia Y, Liang C, Zhang W K, Tao X Y. Nano Lett., 2018, 18: 3104.

[155]

He K Q, Chen C L, Fan R, Liu C, Liao C Z, Xu Y, Tang J N, Li R K Y. Compos. Sci. Technol., 2019, 175: 28.

[156]

Wang X Z, Zhang Y B, Zhang X, Liu T, Lin Y H, Li L L, Shen Y, Nan C W. ACS Appl. Mater. Interfaces, 2018, 10: 24791.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/