Recent Progress on Modification Strategies of Alloy-based Anode Materials for Alkali-ion Batteries

Ying Wu , Yu Yao , Lifeng Wang , Yan Yu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 200 -209.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 200 -209. DOI: 10.1007/s40242-021-0001-5
Review

Recent Progress on Modification Strategies of Alloy-based Anode Materials for Alkali-ion Batteries

Author information +
History +
PDF

Abstract

Alkali-ion batteries, including lithium-ion batteries(LIBs), sodium-ion batteries(NIBs) and potassium-ion batteries (KIBs), with alloy-based anodes exhibit huge potential in high energy density due to the natural abundance, high theoretical capacity as well as suitable operating voltages. However, the practical application is severely hindered by the huge volume variation based on the alloying mechanism and inferior conductivity, especially for red phosphorus(P) and silicon(Si) anodes, which induces poor rate capability and fast capacity decay. Herein, we will briefly review fundamental advantages and challenges of alloy-based anode materials. Then, effective modification strategies of alloy-based anode materials for boosting the performance would be emphasized and discussed. Finally, we will share our perspectives and some opportunities to obtain high-performance alloy-based anode materials for further application.

Keywords

Alloy-based anode / Alkali-ion battery / Modification strategy

Cite this article

Download citation ▾
Ying Wu, Yu Yao, Lifeng Wang, Yan Yu. Recent Progress on Modification Strategies of Alloy-based Anode Materials for Alkali-ion Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 200-209 DOI:10.1007/s40242-021-0001-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Van der Ven A, Deng Z, Banerjee S, Ong S P. Chem. Rev., 2020, 120: 6977.

[2]

Lee W, Kim J, Yun S, Choi W, Kim H, Yoon W-S. Energ. Environ. Sci., 2020, 13: 4406.

[3]

Rajagopalan R, Tang Y, Ji X, Jia C, Wang H. Adv. Funct. Mater., 2020, 30(12): 1909486.

[4]

Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Liu Y, Dou S X. Adv. Funct. Mater., 2020, 30(14): 1909530.

[5]

Xiao Z, Meng J, Xia F, Wu J, Liu F, Zhang X, Xu L, Lin X, Mai L. Energ. Environ. Sci., 2020, 13(9): 3129.

[6]

Zhao L, Zhang T, Zhao H, Hou Y. Materials Today Nano, 2020, 10: 100072.

[7]

Chen M, Liu Q, Zhang Y, Xing G, Chou S-L, Tang Y. J. Mater. Chem. A, 2020, 8: 16061.

[8]

Wu Y, Jiang Y, Shi J, Gu L, Yu Y. Small, 2017, 13(22): 1700129.

[9]

Li Y, Wang H, Wang L, Mao Z, Wang R, He B, Gong Y, Hu X. Small, 2019, 15(9): 1804539.

[10]

Cui Y, Liu W, Feng W, Zhang Y, Du Y, Liu S, Wang H, Chen M, Zhou J. Adv. Funct. Mater., 2020, 30(10): 1908755.

[11]

Lin H, Li M, Yang X, Yu D, Zeng Y, Wang C, Chen G, Du F. Adv. Energy Mater., 2019, 9(20): 1900323.

[12]

Wu Y, Hu S, Xu R, Wang J, Peng Z, Zhang Q, Yu Y. Nano Lett., 2019, 19(2): 1351.

[13]

Song W, Liu X, Wu B, Brandon N, Shearing P R, Brett D J, Xie F, Riley D J. Energy Storage Mater., 2019, 18: 229.

[14]

Ge X, Liu S, Qiao M, Du Y, Li Y, Bao J, Zhou X. Angew. Chem., 2019, 131(41): 14720.

[15]

Chen K-T, Tuan H-Y. ACS Nano, 2020, 14(9): 11648.

[16]

Wang X, Fan L, Gong D, Zhu J, Zhang Q, Lu B. Adv. Funct. Mater., 201, 26(7): 1104.

[17]

Xia M, Chen B, Gu F, Zu L, Xu M, Feng Y, Wang Z, Zhang H, Zhang C, Yang J. ACS Nano, 2020, 14(4): 5111.

[18]

Yang G, Ilango P R, Wang S, Nasir M S, Li L, Ji D, Hu Y, Ramakrishna S, Yan W, Peng S. Small, 2019, 15(22): 1900628.

[19]

Liang S, Cheng Y J, Zhu J, Xia Y, Müller-Buschbaum P. Small Methods, 2020, 4(8): 2000218.

[20]

Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou S X. Adv. Mater., 2017, 29(48): 1700622.

[21]

Liu Y, Liu Q, Jian C, Cui D, Chen M, Li Z, Li T, Nilges T, He K, Jia Z. Nat. Commun., 2020, 11(1): 1.

[22]

Zhang L, Wang C, Dou Y, Cheng N, Cui D, Du Y, Liu P, Al-Mamun M, Zhang S, Zhao H. Angew. Chem. Int. Ed., 2019, 58(26): 8824.

[23]

Lv Y, Shang M, Chen X, Nezhad P S, Niu J. ACS Nano, 2019, 13(10): 12032.

[24]

Zhu L, Zhu Z, Zhou J, Qian Y. Chem. Commun., 2020, 56(79): 11795.

[25]

Huang H, Wang J, Yang X, Hu R, Liu J, Zhang L, Zhu M. Angew. Chem., 2020, 132: 14612.

[26]

Zhou J, Liu X, Zhu L, Niu S, Cai J, Zheng X, Ye J, Lin Y, Zheng L, Zhu Z. Chem-US, 2020, 6(1): 221.

[27]

Wang S., Xiong P., Guo X., Zhang J., Gao X., Zhan F. G., Tang X., Notten P. H., Wang G., Adv. Funct. Mater., 2020, 2001588

[28]

Liu H, Cheng X-B, Huang J-Q, Kaskel S, Chou S, Park H S, Zhang Q. ACS Mater. Lett., 2019, 1(2): 217.

[29]

Tan H, Chen D, Rui X, Yu Y. Adv. Funct. Mater., 2019, 29(14): 1808745.

[30]

Liu Y, Zhang N, Liu X, Chen C, Fan L-Z, Jiao L. Energy Storage Mater., 2017, 9: 170.

[31]

Zhou J, Liu X, Cai W, Zhu Y, Lian J G, Zhang K, Lan Y, Jiang Z, Wang G, Qian Y. Adv. Mater., 2017, 29(29): 1700214.

[32]

Liu S, Xu H, Bian X, Feng J, Liu J, Yang Y, Yuan C, An Y, Fan R, Ci L. ACS Nano, 2018, 12(7): 7380.

[33]

Zhang L, Rajagopalan R, Guo H, Hu X, Dou S, Liu H. Adv. Funct. Mater., 201, 26(3): 440.

[34]

Nguyen H T, Yao F, Zamfir M R, Biswas C, So K P, Lee Y H, Kim S M, Cha S N, Kim J M, Pribat D. Adv. Energy Mater., 2011, 1(6): 1154.

[35]

Lee G-H, Shim H-W, Kim D-W. Nano Energy, 2015, 13: 218.

[36]

Liu Y, Zhou B, Liu S, Ma Q, Zhang W-H. ACS Nano, 2019, 13(5): 5885.

[37]

Xue P, Wang N, Fang Z, Lu Z, Xu X, Wang L, Du Y, Ren X, Bai Z, Dou S. Nano Lett., 2019, 19(3): 1998.

[38]

Liu Y, Liu Q, Zhang A, Cai J, Cao X, Li Z, Asimow P D, Zhou C. ACS Nano, 2018, 12(8): 8323.

[39]

Tian W, Zhang S, Huo C, Zhu D, Li Q, Wang L, Ren X, Xie L, Guo S, Chu P K. ACS Nano, 2018, 12(2): 1887.

[40]

Zhou J, Chen J, Chen M, Wang J, Liu X, Wei B, Wang Z, Li J, Gu L, Zhang Q. Adv. Mater., 2019, 31(12): 1807874.

[41]

Ni J, Wang W, Wu C, Liang H, Maier J, Yu Y, Li L. Adv. Mater., 2017, 29(9): 1605607.

[42]

Ni J, Fu S, Wu C, Maier J, Yu Y, Li L. Adv. Mater., 201, 28(11): 2259.

[43]

Fu S, Ni J, Xu Y, Zhang Q, Li L. Nano Lett., 201, 16(7): 4544.

[44]

Li X, Sun M, Ni J, Li L. Adv. Energy Mater., 2019, 9(24): 1901096.

[45]

Wang L, Wang C, Li F, Cheng F, Chen J. Chem. Commun., 2018, 54(1): 38.

[46]

An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. ACS Nano, 2018, 12(12): 12932.

[47]

Mo R, Tan X, Li F, Tao R, Xu J, Kong D, Wang Z, Xu B, Wang X, Wang C. Nat. Commun., 2020, 11(1): 1.

[48]

Zhou J, Jiang Z, Niu S, Zhu S, Zhou J, Zhu Y, Liang J, Han D, Xu K, Zhu L. Chem-US, 2018, 4(2): 372.

[49]

Ngo D T, Le H T, Kim C, Lee J-Y, Fisher J G, Kim I-D, Park C-J. Energ Environ. Sci., 2015, 8(12): 3577.

[50]

Shi J, Zu L, Gao H, Hu G, Zhang Q. Adv. Funct. Mater., 2020, 30(35): 2002980.

[51]

Lin W, Huang Y-E, Guan L, Huang X, Li L, Du K-Z, Wu X. Carbon, 2020, 170: 85.

[52]

Xiao W, Zhou J, Yu L, Wang D, Lou X W. Angew. Chem., 201, 128(26): 7553.

[53]

Ni J, Li X, Sun M, Yuan Y, Liu T, Li L, Lu J. ACS Nano, 2020, 14(7): 9117.

[54]

Zhang W, Wu Z, Zhang J, Liu G, Yang N-H, Liu R-S, Pang W K, Li W, Guo Z. Nano Energy, 2018, 53: 967.

[55]

Zhang W, Mao J, Li S, Chen Z, Guo Z. J. Am. Chem. Soc., 2017, 139(9): 3316.

[56]

Zhang W, Pang W K, Sencadas V, Guo Z. Joule, 2018, 2(8): 1534.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/