Catalyst-free 2+2 Photodimerization of 1,4-Bis[2-(4-pyridyl)ethenyl]-benzene in Solution Under Low Power UV Irradiation

Ning Chu , Shuping Xu , Weiqing Xu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 816 -820.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 816 -820. DOI: 10.1007/s40242-020-9116-3
Article

Catalyst-free 2+2 Photodimerization of 1,4-Bis[2-(4-pyridyl)ethenyl]-benzene in Solution Under Low Power UV Irradiation

Author information +
History +
PDF

Abstract

Two different kinds of configurations of 1,4-bis[2-(4-pyridyl)ethenyl]-benzene(trans-bpeb and cis-bpeb) were achieved, and a bpeb dimer was synthesized in dimethyl sulfoxide(DMSO). Compared with the previous work that synthesized the bpeb dimer or polymer in crystal with a template agent needed, the reaction occurred in a solution phase in the present method. A hand-held ultraviolet lamp(365 nm) with the power of 12 W and the Watt density of 0.35 mW/cm2 can realize the photodimerization of bpeb, instead of the high-power mercury lamp in most previous studies. Unlike other 2+2 cycloaddition in liquid state using catalysts even noble metals, no catalysts were required here, which is cost-saving. Only the trans-pbeb can start the cycloaddition and the formation of the close J-aggregations of trans-pbeb in DMSO is a precondition for explaining the 2+2 photodimerization. The productivity for the 2+2 cycloaddition product was achieved as 55.6%.

Keywords

2+2 Photodimerization / 1,4-Bis[2-(4-pyridyl)ethenyl]-benzene / Catalyst-free

Cite this article

Download citation ▾
Ning Chu, Shuping Xu, Weiqing Xu. Catalyst-free 2+2 Photodimerization of 1,4-Bis[2-(4-pyridyl)ethenyl]-benzene in Solution Under Low Power UV Irradiation. Chemical Research in Chinese Universities, 2020, 36(5): 816-820 DOI:10.1007/s40242-020-9116-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang Y, Ni X L, Sun T, Cong H, Wei G. RSC Adv., 2014, 4(87): 47000.

[2]

Yam V. W. W., Lau V. C. Y., Wu L. X., J. Chem. Soc. Dalton, 1998, 1461

[3]

Coe B J, Harries J L, Harris J A, Brunschwig B S, Horton P N, Hursthouse M B. Inorg. Chem., 200, 45(26): 11019.

[4]

Park I H, Mulijanto C E, Lee H H, Kang Y, Lee E, Chanthapally A, Lee S S, Vittal J J. Crystal Growth & Design, 201, 16(5): 2504.

[5]

Bhogala B R, Nangia A. Crystal Growth & Design, 2003, 3(4): 547.

[6]

Khan M, Enkelmann V, Brunklaus G. Crystal Growth & Design, 2009, 9(5): 2354.

[7]

Cheng J, Li X, Song W, Xu W, Zhao B, Zhang G. Chem. Phys. Lett., 2005, 405(4–6): 344.

[8]

Jia H, Xu W, An J, Li D, Zhao B. Spectrochimica Acta Part A, 200, 64(4): 956.

[9]

Balgley R, de Ruiter G, Evmenenko G, Bendikov T, Lahav M, van der Boom M E. J. Am. Chem. Soc., 201, 138(50): 16398.

[10]

Ni X L, Chen S, Yang Y, Tao Z. J. Am. Chem. Soc., 201, 138(19): 6177.

[11]

Leonard R, MacGillivray J L R, Ripmeester J A. J. Am. Chem. Soc., 2000, 122: 7817.

[12]

Elizabeth E, Bucar D K, Skvortsova Y, Baltrusaitis J, Geng M L, MacGillivray L R. Organic letters, 2009, 11(22): 5106.

[13]

Stojakovic J, Farris B S, MacGillivray L R. Faraday Discuss, 2014, 170: 35.

[14]

Friščić T, MacGillivray L R. Australian Journal of Chemistry, 200, 59: 613.

[15]

Park I H, Medishetty R, Kim J Y, Lee S S, Vittal J J. Angewandte Chemie, 2014, 53(22): 5591.

[16]

Yang S Y, Deng X L, Jin R F, Naumov P, Panda M K, Huang R B, Zheng L S, Teo B K. J. Am. Chem. Soc., 2014, 136(2): 558.

[17]

Kang Y, Tang X, Yu H, Cai Z, Huang Z, Wang D, Xu J F, Zhang X. Chem. Sci., 2017, 8(12): 8357.

[18]

Park I H, Chanthapally A, Zhang Z, Lee S S, Zaworotko M J, Vittal J J. Angewandte Chemie, 2014, 53(2): 414.

[19]

Dominguez G, Perez-Castells J. Chemical Society Reviews, 2011, 40(7): 3430.

[20]

Laird R C, Nguyen N P, Rusch S F, Baltrusaitis J, Macgillivray L R. Cryst. Growth Des., 2014, 14(3): 893.

[21]

Park I H, Medishetty R, Lee H H, Mulijanto C E, Quah H S, Lee S S, Vittal J J. Angew. Chem. Int. Ed., 2015, 54(25): 7313.

[22]

Park I H, Ju H, Herng T S, Kang Y, Lee S S, Ding J, Vittal J J. Crystal Growth & Design, 201, 16(12): 7278.

[23]

Park I H, Kim K, Lee S S, Vittal J J. Crystal Growth & Design, 2012, 12(7): 3397.

[24]

Park I H, Medishetty R, Lee H H, Herng T S, Ding J, Lee S S, Vittal J J. Crystal Growth & Design, 2015, 15(8): 4156.

[25]

Gulias M, Collado A, Trillo B, Lopez F, Onate E, Esteruelas M A, Mascarenas J L. J. Am. Chem. Soc., 2011, 133(20): 7660.

[26]

Li R, Ma B C, Huang W, Wang L, Wang D, Lu H, Landfester K, Zhang K A I. ACS Catalysis, 2017, 7(5): 3097.

[27]

Wang C, Lu Z. Organic Letters, 2017, 19(21): 5888.

[28]

Sawada Y, Furumi S, Takai A, Takeuchi M, Noguchi K, Tanaka K. J. Am. Chem. Soc., 2012, 134(9): 4080.

[29]

Amatore M, Leboeuf D, Malacria M, Gandon V, Aubert C. J. Am. Chem. Soc., 2013, 135(12): 4576.

[30]

Gutov A V, Rusanov E B, Chepeleva L V, Garasevich S G, Ryabitskii A B, Chernega A N. Russ. J. Gen. Chem., 2009, 79(7): 1513.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/