Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries

Xiaobo Zhu , Tobias Schulli , Lianzhou Wang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 24 -32.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 24 -32. DOI: 10.1007/s40242-020-9103-8
Review

Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries

Author information +
History +
PDF

Abstract

The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage. Despite more than ten years of research, high-voltage cathode materials, such as high-voltage layered oxides, spinel LiNi0.5Mn1.5O4, and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes, cathode materials, and cathode electrolyte interphases under high-voltage operation. This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials. The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.

Keywords

High voltage / Cathode material / Surface engineering / Cathode electrolyte interphase / Cycling stability / Lithium ion battery

Cite this article

Download citation ▾
Xiaobo Zhu, Tobias Schulli, Lianzhou Wang. Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries. Chemical Research in Chinese Universities, 2020, 36(1): 24-32 DOI:10.1007/s40242-020-9103-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akira Y. Angew. Chem. Int. Ed., 2012, 51(24): 5798.

[2]

Wang J, Tang H, Zhang L, Ren H, Yu R, Jin Q, Qi J, Mao D, Yang M, Wang Y, Liu P, Zhang Y, Wen Y, Gu L, Ma G, Su Z, Tang Z, Zhao H, Wang D. Nat. Energy, 201, 1: 16050.

[3]

Zhang J N, Li Q, Ouyang C, Yu X, Ge M, Huang X, Hu E, Ma C, L, S, Xiao R, Yang W, Chu Y, Liu Y, Yu H, Yang XQ, Huang X, Chen L, Li H. Nat. Energy, 2019, 4(7): 594.

[4]

Liu Q, Su X, Lei D, Qin Y, Wen J, Guo F, Wu Y A, Rong Y, Kou R, Xiao X, Aguesse F, Bareño J, Ren Y, Lu W, Li Y. Nat. Energy, 2018, 3(11): 936.

[5]

Zhang J, Zhang J, Ou X, Wan C, Peng C, Zhang B. ACS Appl. Mater. Interfaces, 2019, 11(17): 15507.

[6]

Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. J. Mater. Chem., 2005, 15(23): 2257.

[7]

Nayak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbac D. Adv. Energy Mater., 2018, 8(8): 1702397.

[8]

Zhu X, Li X, Zhu Y, Jin S, Wang Y, Qian Y. Electrochim. Acta, 2014, 121: 253.

[9]

Zhu X, Sun D, Luo B, Hu Y, Wang L. Electrochim. Acta, 2018, 284: 30.

[10]

Zhu X, Li X, Zhu Y, Jin S, Wang Y, Qian Y. J. Power Sources, 2014, 261: 93.

[11]

Okada S, Sawa S, Egashira M, Yamaki J I, Tabuchi M, Kageyama H, Konishi T, Yoshino A. J. Power Sources, 2001, 97/98: 430.

[12]

Li W, Song B, Manthiram A. Chem. Soc. Rev., 2017, 46(10): 3006.

[13]

Zhan C, Wu T, Lu J, Amine K. Energy Environ. Sci., 2018, 11(2): 243.

[14]

Birkl C R, Roberts M R, McTurk E, Bruce P G, Howey D A. J. Power Sources, 2017, 341: 373.

[15]

Yi T F, Mei J, Zhu Y R. J. Power Sources, 201, 316: 85.

[16]

Xu X, Deng S, Wang H, Liu J, Yan H. Nano-Micro Letters, 2017, 9(2): 22.

[17]

Zeng X, Zhan C, Lu J, Amine K. Chem., 2018, 4(4): 690.

[18]

Lee W., Muhammad S., Sergey C., Lee H., Yoon J., Kang Y. M., Yoon W. S., Angew. Chem. Int. Ed., 2019, doi: https://doi.org/10.1002/anie.201902359, https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201902359

[19]

Cho J, Kim Y J, Park B. Chem. Mater., 2000, 12(12): 3788.

[20]

Wise A M, Ban C, Weker J N, Misra S, Cavanagh A S, Wu Z, Li Z, Whittingham M S, Xu K, George S M, Toney M F. Chem. Mater., 2015, 27(17): 6146.

[21]

Kim J W, Kim D H, Oh D Y, Lee H, Kim J H, Lee J H, Jung Y S. J. Power Sources, 2015, 274: 1254.

[22]

Chen Y, Zhang Y, Chen B, Wang Z, Lu C. J. Power Sources, 2014, 256: 20.

[23]

Liu K, Yang G L, Dong Y, Shi T, Chen L. J. Power Sources, 2015, 281: 370.

[24]

Gao Y, Patel R L, Shen KY, Wang X, Axelbaum R L, Liang X. ACS Omega, 2018, 3(1): 906.

[25]

Chen Z, Dahn J R. Electrochem. Solid-State Lett., 2002, 5(10): A213.

[26]

Wu H M, Belharouak I, Abouimrane A, Sun Y K, Amine K. J. Power Sources, 2010, 195(9): 2909.

[27]

Sun Y K, Lee Y S, Yoshio M, Amine K. Electrochem. Solid-State Lett., 2002, 5(5): A99.

[28]

Mou J, Deng Y, He L, Zheng Q, Jiang N, Lin D. Electrochim. Acta, 2018, 260: 101.

[29]

Lu Y C, Mansou A N, Yabuuchi N, Shao-Horn Y. Chem. Mater., 2009, 21(19): 4408.

[30]

Cho J, Kim Y W, Kim B, Lee J G, Park B. Angew. Chem. Int. Ed., 2003, 42(14): 1618.

[31]

Xiao B, Liu J, Sun Q, Wang B, Banis M N, Zhao D, Wang Z, Li R, Cui X, Sham T K, Sun X. Adv. Sci., 2015, 2(5): 1500022.

[32]

Bai Y, Chang Q, Yu Q, Zhao S, Jiang K. Electrochim. Acta, 2013, 112: 414.

[33]

Zhang D, Hu L L, Sun Y G, Piao J Y, Tao XS, Xu YS, Cao A M, Wan L J. J. Mater. Chem. A, 2018, 6(19): 8992.

[34]

Park B C, Kim H B, Myung S T, Amine K, Belharouak I, Lee S M, Sun Y K. J. Power Sources, 2008, 178(2): 826.

[35]

Wu Q, Zhang X, Sun S, Wan N, Pan D, Bai Y, Zhu H, Hu Y S, Dai S. Nanoscale, 2015, 7(38): 15609.

[36]

Lu C, Wu H, Zhang Y, Liu H, Chen B, Wu N, Wang S. J. Power Sources, 2014, 267: 682.

[37]

Xiong X, Wang Z, Guo H, Zhang Q, Li X. J. Mater. Chem. A, 2013, 1(4): 1284.

[38]

He H, Zan L, Zhang Y. J. Alloys Compd., 201, 680: 95.

[39]

Xiong X, Wang Z, Yan G, Guo H, Li X. J. Power Sources, 2014, 245: 183.

[40]

Wang J, Yao S, Lin W, Wu B, He X, Li J, Zhao J. J. Power Sources, 2015, 280: 114.

[41]

Chong J, Xun S, Song X, Liu G, Battaglia V S. Nano Energy, 2013, 2(2): 283.

[42]

Chong J, Xun S, Zhang J, Song X, Xie H, Battaglia V, Wang R. Chem. Eur. J., 2014, 20(24): 7479.

[43]

Lu J, Peng Q, Wang W, Nan C, Li L, Li Y. J. Am. Chem. Soc., 2013, 135(5): 1649.

[44]

Zhang J, Li Z, Gao R, Hu Z, Liu X. J. Phys. Chem. C, 2015, 119(35): 20350.

[45]

Mou J, Deng Y, Song Z, Zheng Q, Lam K H, Lin D. Dalton Trans., 2018, 47(20): 7020.

[46]

Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X. J. Power Sources, 2017, 343: 345.

[47]

Li J, Zhu Y, Wang L, Cao C. ACS Appl. Mater. Interfaces, 2014, 6(21): 18742.

[48]

Fu J, Mu D, Wu B, Bi J, Cui H, Yang H, Wu H, Wu F. ACS Appl. Mater. Interfaces, 2018, 10(23): 19704.

[49]

Kim H, Byun D, Chang W, Jung H. J. Mater. Chem. A, 2017, 5(47): 25077.

[50]

Gabrielli G, Axmann P, Diemant T, Behm R J, Wohlfahrt-Mehrens M. ChemSusChem, 201, 9(13): 1670.

[51]

Zhao R, Li L, Xu T, Wang D, Pan D, He G, Zhao H, Bai Y. ACS Appl. Mater. Interfaces, 2019, 11(17): 16233.

[52]

Shim J H, Han J M, Lee S. ACS Appl. Mater. Interfaces, 201, 8(19): 12205.

[53]

Yang Q, Huang J, Li Y, Wang Y, Qiu J, Zhang J, Yu H, Yu X, Li H, Chen L. J. Power Sources, 2018, 388: 65.

[54]

Deng Y F, Zhao S X, Xu YH, Nan C W. J. Power Sources, 2015, 296: 261.

[55]

Li L, Zhao R, Xu T, Wang D, Pan D, Zhang K, Yu C, Lu X, He G, Bai Y. Nanoscale, 2019, 11(18): 8967.

[56]

Liang J Y, Zeng X X, Zhang X D, Wang P F, Ma J Y, Yin Y X, Wu X W, Guo Y G, Wan L J. J. Am. Chem. Soc., 2018, 140(22): 6767.

[57]

Li F, Li J, Zhu F, Liu T, Xu B, Kim T H, Kramer M J, Ma C, Zhou L, Nan C W. Matter, 2019, 1(4): 1001.

[58]

Aravindan V, Gnanaraj J, Lee Y S, Madhavi S. J. Mater. Chem. A, 2013, 1(11): 3518.

[59]

Li H H, Jin J, Wei J P, Zhou Z, Yan J. Electrochem. Commun., 2009, 11(1): 95.

[60]

Gao X W, Deng Y F, Wexler D, Chen G H, Chou S L, Liu H K, Shi Z C, Wang J Z. J. Mater. Chem. A, 2015, 3(1): 404.

[61]

Gao X W, Wang J Z, Chou S L, Liu H K. J. Power Sources, 2012, 220: 47.

[62]

Kwon Y, Lee Y, Kim S O, Kim H S, Kim K J, Byun D, Choi W. ACS Appl. Mater. Interfaces, 2018, 10(35): 29457.

[63]

Liu J, Chen Y, Xu J, Sun W, Zheng C, Li Y. RSC Adv., 2019, 9(6): 3081.

[64]

Gao H, Zeng X, Hu Y, Tileli V, Li L, Ren Y, Meng X, Maglia F, Lamp P, Kim S J, Amine K, Chen Z. ACS Applied Energy Mater., 2018, 1(5): 2254.

[65]

Zhao Y, Li J, Dahn J R. Chem. Mater., 2017, 29(12): 5239.

[66]

Piao J Y, Duan S Y, Li X J, Tao X S, Xu Y S, Cao A M, Wan L J. Chem. Commun., 2018, 54(42): 5326.

[67]

Piao J Y, Gu L, Wei Z, Ma J, Wu J, Yang W, Gong Y, Sun Y G, Duan S Y, Tao X S, Bin D S, Cao A M, Wan L J. J. Am. Chem. Soc., 2019, 141(12): 4900.

[68]

Piao J Y, Sun Y G, Duan S Y, Cao A M, Wang X L, Xiao R J, Yu X Q, Gong Y, Gu L, Li Y, Liu Z J, Peng Z Q, Qiao R M, Yang W L, Yang X Q, Goodenough J B, Wan L J. Chem., 2018, 4(7): 1685.

[69]

Lim J M, Oh R G, Kim D, Cho W, Cho K, Cho M, Park M S. ChemSusChem, 201, 9(20): 2967.

[70]

Zheng H, Yang R, Liu G, Song X, Battaglia V S. J. Phys. Chem. C, 2012, 116(7): 4875.

[71]

Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. Angew. Chem. Int. Ed., 2012, 51(35): 8762.

[72]

Cai Z P, Liang Y, Li W S, Xing L D, Liao Y H. J. Power Sources, 2009, 189(1): 547.

[73]

Park J K. Principles and Applications of Lithium Secondary Batteries, 2012, Weinheim: John Wiley & Sons

[74]

Choi J, Ryou M H, Son B, Song J, Park J K, Cho K Y, Lee Y M. Journal of Power Sources, 2014, 252: 138.

[75]

Pieczonka N P W, Borgel V, Ziv B, Leifer N, Dargel V, Aurbach D, Kim J H, Liu Z, Huang X, Krachkovskiy S A, Goward G R, Halalay I, Powell B R, Manthiram A. Adv. Energy Mater., 2015, 5(23): 1501008.

[76]

Zhang T, Li J T, Liu J, Deng Y P, Wu Z G, Yin Z W, Guo D, Huang L, Sun S G. Chem. Commun., 201, 52(25): 4683.

[77]

Zhang S J, Deng Y P, Wu Q H, Zhou Y, Li J T, Wu Z Y, Yin Z W, Lu Y Q, Shen C H, Huang L, Sun S G. ChemElectroChem, 2018, 5(9): 1321.

[78]

Zhang S, Gu H, Pan H, Yang S, Du W, Li X, Gao M, Liu Y, Zhu M, Ouyang L, Jian D, Pan F. Adv. Energy Mater., 2017, 7(6): 1601066.

[79]

Pham H Q, Kim G, Jung H M, Song S W. Adv. Funct. Mater., 2018, 28(2): 1704690.

[80]

Hitomi S, Kubota K, Horiba T, Hida K, Matsuyama T, Oji H, Yasuno S, Komaba S. ChemElectroChem, 2019, 6(19): 5070.

[81]

Li G, Liao Y, He Z, Zhou H, Xu N, Lu Y, Sun G, Li W. Electrochim. Acta, 2019, 319: 527.

[82]

Dong T, Zhang H, Ma Y, Zhang J, Du X, Lu C, Shangguan X, Li J, Zhang M, Yang J, Zhou X, Cui G. J. Mater. Chem. A, 2019, 7(42): 24594.

[83]

Ma Y, Chen K, Ma J, Xu G, Dong S, Chen B, Li J, Chen Z, Zhou X, Cui G. Energy Environ. Sci., 2019, 12(1): 273.

[84]

Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. J. Power Sources, 2005, 147(1): 269.

[85]

Solchenbach S, Metzger M, Egawa M, Beyer H, Gasteiger H A. J. Electrochem. Soc., 2018, 165(13): A3022.

[86]

Gnanaraj J S, Zinigrad E, Asraf L, Gottlieb H E, Sprecher M, Schmidt M, Geissler W, Aurbach D. J. Electrochem. Soc., 2003, 150(11): A1533.

[87]

Xu M, Zhou L, Dong Y, Chen Y, Demeaux J, MacIntosh A D, Garsuch A, Lucht B L. Energy Environ. Sci., 201, 9(4): 1308.

[88]

Haregewoin A M, Wotango A S, Hwang B J. Energy Environ. Sci., 201, 9(6): 1955.

[89]

Zhao H, Yu X, Li J, Li B, Shao H, Li L, Deng Y. J. Mater. Chem. A, 2019, 7(15): 8700.

[90]

Xu G, Wang X, Li J, Shangguan X, Huang S, Lu D, Chen B, Ma J, Dong S, Zhou X, Kong Q, Cui G. Chem. Mater., 2018, 30(22): 8291.

[91]

Liu J, Song X, Zhou L, Wang S, Song W, Liu W, Long H, Zhou L, Wu H, Feng C, Guo Z. Nano Energy, 2018, 46: 404.

[92]

von Aspern N, Diddens D, Kobayashi T, Börner M, Stubbmann-Kazakova O, Kozel V, Röschenthaler G V, Smiatek J, Winter M, Cekic-Laskovic I. ACS Appl. Mater. Interfaces, 2019, 11(18): 16605.

[93]

Xu M, Zhou L, Dong Y, Chen Y, Garsuch A, Lucht B L. J. Electrochem. Soc., 2013, 160(11): A2005.

[94]

Yang L, Markmaitree T, Lucht B L. J. Power Sources, 2011, 196(4): 2251.

[95]

Li Y, Wan S, Veith G M, Unocic R R, Paranthaman M P, Dai S, Sun X G. Adv. Energy Mater., 2017, 7(4): 1601397.

[96]

Hong S, Hong B, Song W, Qin Z, Duan B, Lai Y, Jian F. J. Electrochem. Soc., 2018, 165(2): A368.

[97]

Xu G, Pang C, Chen B, Ma J, Wang X, Chai J, Wang Q, An W, Zhou X, Cui G, Chen L. Adv. Energy Mater., 2018, 8(9): 1701398.

[98]

Lan J, Zheng Q, Zhou H, Li J, Xing L, Xu K, Fan W, Yu L, Li W. ACS Appl. Mater. Interfaces, 2019, 11(32): 28841.

[99]

Lee T J, Soon J, Chae S, Ryu J H, Oh S M. ACS Appl. Mater. Interfaces, 2019, 11(12): 11306.

[100]

Han J G, Jeong M Y, Kim K, Park C, Sung C H, Bak D W, Kim K H, Jeong K M, Choi N S. J. Power Sources, 2020, 446: 227366.

[101]

Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nat. Commun., 201, 7(1): 12032.

[102]

Doi T, Shimizu Y, Matsumoto R, Hashinokuchi M, Inaba M. ChemistrySelect, 2017, 2(28): 8824.

[103]

Qiao Y, He Y, Jiang K, Liu Y, Li X, Jia M, Guo S, Zhou H. Adv. Energy Mater., 2018, 8(33): 1802322.

[104]

Gao X, Wu F, Mariani A, Passerini S. ChemSusChem, 2019, 12(18): 4185.

[105]

Li J, Ma C, Chi M, Liang C, Dudney N J. Adv. Energy Mater., 2015, 5(4): 1401408.

[106]

Chen S, Wen K, Fan J, Bando Y, Golberg D. J. Mater. Chem. A, 2018, 6(25): 11631.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/