Intercalation Effect in NiAl-layered Double Hydroxide Nanosheets for CO2 Reduction Under Visible Light

Peter Kipkorir , Ling Tan , Jing Ren , Yufei Zhao , Yu-Fei Song

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 127 -133.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 127 -133. DOI: 10.1007/s40242-020-9096-3
Article

Intercalation Effect in NiAl-layered Double Hydroxide Nanosheets for CO2 Reduction Under Visible Light

Author information +
History +
PDF

Abstract

Photocatalytic reduction of CO2(CO2PR) to valuable solar fuels is considered as a promising route to the amelioration of fossil fuel conundrum and the mitigation of greenhouse gases. Although progress has been made to enhance CO2PR performance, the available method that can promote the selectivity of CO2PR products remains to be a challenge. In this work, we synthesized NO3 or CO3 2− intercalated NiAl-layered double hydroxide(NiAl-LDH) photocatalysts and investigated the performance of CO2PR in the presence of an electron donor and a photosensitizer. Compared with Ni2Al-CO3 2−, Ni2Al-NO3 exhibited superior catalytic performance in the CO2PR, and the resulted selectivity of CH4 in Ni2Al-NO3 (6.1%) was 12.2 times that of Ni2Al-CO3 2−(0.5%) under visible light irradiation. X-Ray absorption fine structure(XAFS) result reveals a relative abundance of defects in Ni2Al-NO3 , which played as active sites and promoted charge transfer in CO2PR for the efficient CH4 evolution.

Keywords

Visible light catalysis / CO2 photoreduction / Layered double hydroxide / Intercalated anion / Defect

Cite this article

Download citation ▾
Peter Kipkorir, Ling Tan, Jing Ren, Yufei Zhao, Yu-Fei Song. Intercalation Effect in NiAl-layered Double Hydroxide Nanosheets for CO2 Reduction Under Visible Light. Chemical Research in Chinese Universities, 2020, 36(1): 127-133 DOI:10.1007/s40242-020-9096-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim W, Yuan G, McClure B A, Frei H. J. Am. Chem. Soc., 2014, 136: 11034.

[2]

Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew. Chem. Int. Ed., 2012, 51: 8008.

[3]

Chang X, Wang T, Gong J. Energy Environ. Sci., 201, 9: 2177.

[4]

Ben S, Yuan F, Zhu Y. Chem. Res. Chinese Universities, 201, 32(6): 1005.

[5]

Thoi V S, Kornienko N, Margarit C G, Yang P, Chang C J. J. Am. Chem. Soc., 2013, 135: 14413.

[6]

Liu G, Meng X, Zhang H, Zhao G, Pang H, Wang T, Li P, Kako T, Ye J. Angew. Chem. Int. Ed., 2017, 56: 5570.

[7]

Ozin G A. Adv. Mater., 2015, 27: 1957.

[8]

Zhao Y, Waterhouse G I N, Chen G, Xiong X, Wu L Z, Tung C H, Zhang T. Chem. Soc. Rev., 2019, 48: 1972.

[9]

Zhao Y, Jia X, Waterhouse G I N, Wu L Z, Tung C H, O’Hare D, Zhang T. Adv. Energy Mater., 201, 6: 1501974.

[10]

Yu J, Wang Q, O’Hare D, Sun L. Chem. Soc. Rev., 2017, 46: 5950.

[11]

Wang Z, Xu S M, Xu Y, Tan L, Wang X, Zhao Y, Duan H, Song Y F. Chem. Sci., 2019, 10: 378.

[12]

Sun J, Wang X, Chen S, Liao Y, Gao A, Hu Y, Yang T, Xu X, Wang Y, Song J. Acta Phys. Chim. Sin., 2020, 36: 1911009.

[13]

Das J, Das D, Parida K M. J. Colloid Interface Sci., 200, 301: 569.

[14]

Prasanna S V, Vishnu K P. Solid State Sci., 2008, 10: 260.

[15]

Mahjoubi F Z, Khalidi A, Abdennouri M, Barka N. J. Taibah Univ. Sci., 2017, 11: 90.

[16]

Xu Y, Wang Z, Tan L, Yan H, Zhao Y, Duan H, Song Y F. Ind. Eng. Chem. Res., 2018, 57: 5259.

[17]

Boyapati M C, Sateesh M, Naidu S C, Mannepalli L K, Sreedhar B. J. Am. Chem. Soc., 2002, 124: 14127.

[18]

Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O’Hare D, Zhong Z. Energy Environ. Sci., 2014, 7: 3478.

[19]

Tang N, He T, Liu J, Li L, Shi H, Cen W, Ye Z. Nanoscale Res. Lett., 2018, 13: 1.

[20]

Hutson N D, Attwood B C. Adsorption, 2008, 14: 781.

[21]

Xu Y, Wang Z, Tan L, Zhao Y, Duan H, Song Y F. Ind. Eng. Chem. Res., 2018, 57: 10411.

[22]

Zhao Y, Zhang X, Jia X, Waterhouse G I N, Shi R, Zhang X, Zhan F, Tao Y, Wu L Z, Tung C H, O’Hare D, Zhang T. Adv. Energy Mater., 2018, 8: 1703585.

[23]

Zhao Y, Chen G, Bian T, Zhou C, Waterhouse G I, Wu L Z, Tung C H, Smith L J, O’Hare D, Zhang T. Adv. Mater., 2015, 27: 7824.

[24]

Tan L, Xu S M, Wang Z, Xu Y, Wang X, Hao X, Bai S, Ning C, Wang Y, Zhang W, Jo Y K, Hwang S J, Cao X, Zheng X, Yan H, Zhao Y, Duan H, Song Y F. Angew. Chem. Int. Ed., 2019, 58: 11860.

[25]

Xia S, Qian M, Zhou X, Meng Y, Xue J, Ni Z. Mol. Catal., 2017, 435: 118.

[26]

Zhou D, Cai Z, Bi Y, Tian W, Luo M, Zhang Q, Zhang Q, Xie Q, Wang J, Li Y, Kuang Y, Duan X, Bajdich M, Siahrostami S, Sun X. Nano Research, 2018, 11: 1358.

[27]

Wei M, Xu X, Wang X, Li F, Zhang H, Lu Y, Pu M, Evans D G, Duan X. Eur. J. Inorg. Chem., 200, 14: 2831.

[28]

Ravel B, Newville M. J. Synchrotron Rad., 2005, 12: 537.

[29]

Trujillano R, Holgado M J, González J L, Rives V. Solid State Sci., 2005, 7: 931.

[30]

Ferreira O P, Alves O L, Gouveia D X, Souza F A G, de Paiva J A C, Filho J M. J. Solid State Chem., 2004, 177: 3058.

[31]

Gao D, Zhang Y, Zhou Z, Cai F, Zhao X, Huang W, Li Y, Zhu J, Liu P, Yang F, Wang G, Bao X. J. Am. Chem. Soc., 2017, 139: 5652.

[32]

Jung H, Cho K M, Kim K H, Yoo H W, Al-Saggaf A, Gereige I, Jung H T. ACS Sustain. Chem. Eng., 2018, 6: 5718.

[33]

Wang H, Xiang X, Li F. J. Mater. Chem., 2010, 20: 3944.

[34]

Kim W, Frei H. ACS Catal., 2015, 5: 5627.

[35]

Wang S B, Guan B Y, Lou X W. J. Am. Chem. Soc., 2018, 140: 5037.

[36]

Pan Y X, You Y, Xin S, Li Y, Fu G, Cui Z, Men Y L, Cao F F, Yu S H, Goodenough J B. J. Am. Chem. Soc., 2017, 139: 4123.

[37]

Sun Y, Sun Z, Gao S, Cheng H, Liu Q, Lei F, Wei S, Xie Y. Adv. Energy Mater., 2014, 4: 1300611.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/