Recent Progress of Atmospheric Water Harvesting Using Metal-Organic Frameworks

Tingting Pan , Kaijie Yang , Yu Han

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 33 -40.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 33 -40. DOI: 10.1007/s40242-020-9093-6
Review

Recent Progress of Atmospheric Water Harvesting Using Metal-Organic Frameworks

Author information +
History +
PDF

Abstract

Atmospheric water harvesting based on vapor adsorption is a newly emerged and potential technology to supply portable water for arid areas. To efficiently harvest vapor from the air, sorbents are required to have considerable adsorption capacity, easy regeneration and high stability. With the advantages of porous structure, tunable pore size and tailorable hydrophilicity, metal-organic frameworks (MOFs) have demonstrated excellent performance in vapor adsorption and water generation. In this review, we first discuss the degradation mechanisms of MOFs exposed to water and summarize the structure-stability relationship; by centering on the adsorption isotherms, the connection between the structure of MOFs and the water adsorption property is illuminated; finally, some prospects are suggested in order to push forward the progress of this technology.

Keywords

Metal organic framework / Atmospheric water harvesting / Hydrolytic stability / Water adsorption isotherm

Cite this article

Download citation ▾
Tingting Pan, Kaijie Yang, Yu Han. Recent Progress of Atmospheric Water Harvesting Using Metal-Organic Frameworks. Chemical Research in Chinese Universities, 2020, 36(1): 33-40 DOI:10.1007/s40242-020-9093-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Elimelech M, Phillip W A. Science, 2011, 333(6043): 712.

[2]

Kalmutzki M J, Diercks C S, Yaghi O M. Advanced Materials, 2018, 30(37): 1704304.

[3]

Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P. Water Research, 2009, 43(9): 2317.

[4]

Ghaffour N, Missimer T M, Amy G L. Desalination, 2013, 309: 197.

[5]

Tu Y, Wang R, Zhang Y, Wang J. Joule, 2018, 2(8): 1452.

[6]

Kim H, Yang S, Rao S R, Narayanan S, Kapustin E A, Furukawa H, Umans A S, Yaghi O M, Wang E N. Science, 2017, 356(6336): 430.

[7]

Scrivani A, Bardi U A. Desalination, 2008, 220(1–3): 592.

[8]

Yang K, Shi Y, Wu M, Wang W, Jin Y, Li R, Shahzad M, Ng K, Wang P. Journal of Materials Chemistry A, 2019.

[9]

Li R, Shi Y, Alsaedi M, Wu M, Shi L, Wang P. Environmental Science & Technology, 2018, 52(19): 11367.

[10]

Nandakumar D K, Ravi S K, Zhang Y, Guo N, Zhang C, Tan S C. Energy & Environmental Science, 2018, 11(8): 2179.

[11]

Nandakumar D K, Zhang Y, Ravi S K, Guo N, Zhang C, Tan S C. Advanced Materials, 2019, 31(10): 1806730.

[12]

Zhao F, Zhou X, Liu Y, Shi Y, Dai Y, Yu G. Advanced Materials, 2019, 31(10): 1806446.

[13]

Zheng X, Ge T S, Wang R Z. Energy, 2014, 74: 280.

[14]

Kumar M, Yadav A. Journal of Renewable and Sustainable Energy, 2015, 7(3): 033122.

[15]

Li X, Wang J, Liu X, Liu L, Cha D, Zheng X, Yousef A, Song K, Zhu Y, Zhang D, Han Y. Journal of the American Chemical Society, 2019, 141(30): 12021.

[16]

Li J, Kupplera R J, Zhou H. Chemical Society Reviews, 2009, 38(5): 1477.

[17]

Hiroyasu F, Nakeun K, Yong B G, Naoki A, Sang B C, Choi E. Science, 2010, 329(5990): 424.

[18]

Li Y, Yang R T. Langmuir, 2007, 23(26): 12937.

[19]

Schoenecker P M, Carson C G, Jasuja H, Flemming C J J, Walton K S. Industrial & Engineering Chemistry Research, 2012, 51(18): 6513.

[20]

Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. Journal of the American Chemical Society, 2009, 131(43): 15834.

[21]

DeCoste J B, Peterson G W, Jasuja H, Glover T G, Huang Y, Walton K S. Journal of Materials Chemistry A, 2013, 1(18): 5642.

[22]

de Toni M, Jonchiere R, Pullumbi P, Coudert F, Fuchs A H. ChemPhysChem, 2012, 13(15): 3497.

[23]

Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. USA, 200, 103(27): 10186.

[24]

Choi H J, Dincă M, Dailly A, Long J R. Energy Environ. Sci., 2010, 3(1): 117.

[25]

He K, Li Z, Wang L, Fu Y, Quan H, Li Y, Wang X, Gunasekaran S, Xu X. ACS Applied Materials & Interfaces, 2019, 11(29): 26250.

[26]

Wahiduzzaman M, Wang S, Schnee J, Vimont A, Ortiz V, Yot P G, Retoux R, Daturi M, Lee J S, Chang J, Serre C, Maurin G, Devautour-Vinot S. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5776.

[27]

Li P, Vermeulen N A, Gong X, Malliakas C D, Stoddart J F, Hupp J T, Farha O K. Angewandte Chemie International Edition, 201, 55(35): 10358.

[28]

Liu J, Benin A I, Furtado A M B, Jakubczak P, Willis R R, LeVan M D. Langmuir, 2011, 27(18): 11451.

[29]

Kizzie A C, Wong-Foy A G, Matzger A J. Langmuir, 2011, 27(10): 6368.

[30]

Jasuja H, Huang Y, Walton K S. Langmuir, 2012, 28(49): 16874.

[31]

Bellarosa L, Gutiérrez-Sevillano J J, Calero S, López N. Physical Chemistry Chemical Physics: PCCP, 2013, 15(40): 17696.

[32]

Pal T K, De D, Senthilkumar S, Neogi S, Bharadwaj P K. Inorganic Chemistry, 201, 55(16): 7835.

[33]

Paranthaman S, Coudert F, Fuchs A H. Physical Chemistry Chemical Physics, 2010, 12(28): 8123.

[34]

Nijem N, Canepa P, Kaipa U, Tan K, Roodenko K, Tekarli S, Halbert J, Oswald I W H, Arvapally R K, Yang C, Thonhauser T, Omary M A, Chabal Y J. Journal of the American Chemical Society, 2013, 135(34): 12615.

[35]

Kang I J, Khan N A, Haque E, Jhung S H. Chemistry—A European Journal, 2011, 17(23): 6437.

[36]

Trapani F, Polyzoidis A, Loebbecke S, Piscopo C G. Microporous and Mesoporous Materials, 201, 230: 20.

[37]

Canivet J, Bonnefoy J, Daniel C, Legrand A, Coasne B, Farrusseng D. New J. Chem., 2014, 38(7): 3102.

[38]

Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S W. Pure and Applied Chemistry, 2015, 87(9): 1051.

[39]

Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S. Microporous and Mesoporous Materials, 2009, 120(3): 325.

[40]

Zhang Y, He T, Kong X, Lv X, Wu X, Li J. ACS Applied Materials & Interfaces, 2018, 10(33): 27868.

[41]

Reinsch H, van der Veen M A, Gil B, Marszalek B, Verbiest T, de Vos D, Stock N. Chemistry of Materials, 2013, 25(1): 17.

[42]

Rieth A J, Yang S, Wang E N, Dincă M. ACS Central Science, 2017, 3(6): 668.

[43]

Jeremias F, Khutia A, Henninger S K, Janiak C. J. Mater. Chem., 2012, 22(20): 10148.

[44]

Furukawa H, Gándara F, Zhang Y, Jiang J, Queen W L, Hudson M R, Yaghi O M. Journal of the American Chemical Society, 2014, 136(11): 4369.

[45]

Choi J, Lin L, Grossman J C. The Journal of Physical Chemistry C, 2018, 122(10): 5545.

[46]

Ghosh P, Colón Y J, Snurr R Q. Chem. Commun, 2014, 50(77): 11329.

[47]

Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, Férey G. Journal of the American Chemical Society, 2002, 124(45): 13519.

[48]

Yamada T, Shirai Y, Kitagawa H. Chemistry—An Asian Journal, 2014, 9(5): 1316.

[49]

Devautour-Vinot S, Maurin G, Henn F, Serre C, Férey G. Physical Chemistry Chemical Physics, 2010, 12(39): 12478.

[50]

Shigematsu A, Yamada T, Kitagawa H. Journal of the American Chemical Society, 2011, 133(7): 2034.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/