Nitrogen-doped Carbon Coated Na3V2(PO4)3 with Superior Sodium Storage Capability

Laiqiang Xu , Jiayang Li , Yitong Li , Peng Cai , Cheng Liu , Guoqiang Zou , Hongshuai Hou , Lanping Huang , Xiaobo Ji

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 459 -466.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 459 -466. DOI: 10.1007/s40242-020-9088-3
Article

Nitrogen-doped Carbon Coated Na3V2(PO4)3 with Superior Sodium Storage Capability

Author information +
History +
PDF

Abstract

Cathodes with high cycling stability and rate capability are required for ambient temperature sodium ion batteries in renewable energy storage application. Na3V2(PO4)3 is an attractive cathode material with excellent electrochemical stability and fast ion diffusion coefficient within the 3D NASICON structure. Nevertheless, the practical application of Na3V2(PO4)3 is seriously hindered by its intrinsically poor electronic conductivity. Herein, solvent evaporation method is presented to obtain the nitrogen-doped carbon coated Na3V2(PO4)3 cathode material, delivering enhanced electrochemical performances. N-Doped carbon layer coating serves as a highly conducting pathway, and creates numerous extrinsic defects and active sites, which can facilitate the storage and diffusion of Na+. Moreover, the N-doped carbon layer can provide a stable framework to accommodate the agglomeration of the electrode upon electrode cycling. N-Doped carbon coated Na3V2(PO4)3(NC-NVP) exhibits excellent long cycling life and superior rate performances than bare Na3V2(PO4)3 without carbon coating. NC-NVP delivers a stable capacity of 95.9 mA·h/g after 500 cycles at 1 C rate, which corresponds to high capacity retention(94.6%) with respect to the initial capacity(101.4 mA·h/g). Over 91.3% of the initial capacity is retained after 500 cycles at 5 C, and the capacity can reach 85 mA·h/g at 30 C rate.

Keywords

Cathode / Sodium ion battery / Na3V2(PO4)3 / Nitrogen-doped carbon

Cite this article

Download citation ▾
Laiqiang Xu, Jiayang Li, Yitong Li, Peng Cai, Cheng Liu, Guoqiang Zou, Hongshuai Hou, Lanping Huang, Xiaobo Ji. Nitrogen-doped Carbon Coated Na3V2(PO4)3 with Superior Sodium Storage Capability. Chemical Research in Chinese Universities, 2020, 36(3): 459-466 DOI:10.1007/s40242-020-9088-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dunn B, Kamath H, Tarascon J M. Science, 2011, 334: 928.

[2]

Hou H S, Shao L D, Zhang Y, Zou G Q, Chen J, Ji X. Adv. Sci., 2017, 4: 1600243.

[3]

Li L, Wu Z P, Sun H, Chen D M, Gao J, Suresh S, Chow P, Singh C V, Koratkar N. ACS Nano, 2015, 9: 11342.

[4]

Cao D P, Yin C L, Shi D R, Fu Z W, Zhang J C, Li C L. Adv. Funct. Mater., 2017, 27: 1701130.

[5]

Wu Z P, Liu K X, Lv C, Zhong S W, Wang Q H, Liu T, Liu X B, Yin Y H, Hu Y Y, Wei D, Liu Z Y. Small, 2018, 14: 1800414.

[6]

Zhu C J, Chen J, Liu S S, Cheng B M, Xu Y, Zhang P W, Zhang Q, Li Y T, Zhong S S. J. Mater. Sci., 2018, 53: 5242.

[7]

Ge P, Hou H S, Cao X Y, Li S J, Zhao G G, Guo T X, Wang C, Ji X B. Adv. Sci., 2018, 5: 1800080.

[8]

Suresh S, Wu Z P, Bartolucci S F, Basu S, Mukherjee R, Gupta T, Hundekar P, Shi Y, Lu T M, Koratkar N. ACS Nano, 2017, 11: 5051.

[9]

Liu X L, Li D, Mo Q L, Guo X Y, Yang X X, Chen G X, Zhong S W. J. Alloys Compd., 2014, 609: 54.

[10]

Huang B, Xu BY, Li YT, Zhou W D, You Y, Zhong SW, Wang C A, Goodenough J B. ACS Appl. Mater. Interfaces, 201, 8: 14552.

[11]

Cui Z H, Li C L, Yu P F, Yang M H, Guo X X, Yin C L. J. Mater. Chem. A, 2015, 3: 509.

[12]

Xu J T, Wang M, Wickramaratne N P, Jaroniec M, Dou S X, Dai L M. Adv. Mater., 2015, 27: 2042.

[13]

Zhang B, Dugas R, Rousse G, Rozier P, Abakumov A M, Tarascon J M. Nat. Commun., 201, 7: 10308.

[14]

Li Y M, Xu S Y, Wu X Y, Yu J Z, Wang Y S, Hu Y S, Li H, Chen L Q, Huang X J. J. Mater. Chem. A, 2015, 3: 71.

[15]

Zhu Y J, Wen Y, Fan X L, Gao T, Han F D, Luo C, Liou S C, Wang C S. ACS Nano, 2015, 9: 3254.

[16]

Hou H S, Banks C E, Jing M J, Zhang Y, Ji X B. Adv. Mater., 2015, 27: 7861.

[17]

Zou G Q, Hou H S, Foster C W, Banks C E, Guo T X, Jiang Y L, Zhang Y, Ji X B. Adv. Sci., 2018, 5: 1800241.

[18]

Wu T J, Zhang C Y, Zou G Q, Hu J G, Zhu L M, Cao X Y, Hou H S, Ji X B. Sci. China Mater., 2019, 62: 1127.

[19]

Zhou H P, Cao Y J, Ma Z L, Li S L. Nanotechnol., 2018, 29: 195201.

[20]

Kim D H, Lee E, Slater M, Lu W Q, Rood S, Johnson C S. Electrochem. Commun., 2012, 18: 66.

[21]

Yu C Y, Park J S, Jung H G, Chung K Y, Aurbach D, Sun Y K, Myung S T. Energy Environ. Sci., 2015, 8: 2019.

[22]

Yu H J, Guo S H, Zhu Y B, Ishida M, Zhou H S. Chem. Commun., 2014, 50: 457.

[23]

Han M H, Gonzalo E, Sharma N, López del Amo J M, Armand M, Avdeev M, SaizGaritaonandia J J, Rojo T. Chem. Mater., 201, 28: 106.

[24]

Zhao J, Zhao LW, Lu X, Dimov N, Okada S, Nishida T. J. Electrochem. Soc., 2013, 160: 3077.

[25]

Wang P F, Xin H S, Zuo T T, Li Q H, Yang X N, Yin Y X, Gao X K, Yu X Q, Guo Y G. Angew. Chem., Int. Ed., 2018, 57: 8178.

[26]

Li S, Dong Y F, Xu L, Xu X, He L, Mai L Q. Adv. Mater., 2014, 26: 3545.

[27]

Chao D L, Lai C H, Liang P, Wei Q L, Wang Y S, Zhu C R, Deng G, Doan-Nguyen V V T, Lin J, Mai L Q, Fan H J, Dunn B, Shen Z X. Adv. Energy Mater., 2018, 8: 1800058.

[28]

Zhang J X, Fang Y J, Xiao L F, Qian J F, Cao Y L, Ai X P, Yang H X. ACS Appl. Mater. Interfaces, 2017, 9: 7177.

[29]

Rui X H, Sun W P, Wu C, Yu Y, Yan Q Y. Adv. Mater., 2015, 27: 6670.

[30]

Fang Y J, Xiao L F, Ai X P, Cao Y L, Yang H X. Adv. Mater., 2015, 27: 5895.

[31]

Zhang J X, Yuan T C, Wan H Y, Qian J F, Ai X P, Yang H X, Cao Y L. Sci. China Chem., 2017, 60: 1546.

[32]

Tao S, Cui P X, Huang W F, Yu Z, Wang X B, Wei S H, Liu D B, Song L, Chu W S. Carbon, 201, 96: 1028.

[33]

Wang E H, Chen M Z, Liu X H, Liu Y M, Guo H P, Wu Z G, Xiang W, Zhong B H, Guo X D, Chou S L, Dou S X. Small Methods, 2019, 3: 1800169.

[34]

Liu J, Tang K, Song K P, van Aken P A, Yu Y, Maier J. Nanoscale, 2014, 6: 5081.

[35]

Jiang Y, Yang Z Z, Li W H, Zeng L C, Pan F S, Wang M, Wei X, Hu G T, Gu L, Yu Y. Adv. Energy Mater., 2015, 5: 1402104.

[36]

Jian Z L, Zhao L, Pan H L, Hu Y S, Li H, Chen W, Chen L Q. Electrochem. Commun., 2012, 14: 86.

[37]

Zhang L L, Ma D, Li T, Liu J, Ding X K, Huang Y H, Yang X L. ACS Appl. Mater. Interfaces, 2018, 10: 36851.

[38]

Shen W, Wang C, Xu Q J, Liu H M, Wang Y G. Adv. Energy Mater., 2015, 5: 1400982.

[39]

Shan T T, Xin S, You Y, Cong H P, Yu S H, Manthiram A. Angew. Chem., Int. Ed., 201, 55: 12783.

[40]

Zhao L, Hu Y S, Li H, Wang Z X, Chen L Q. Adv. Mater., 2011, 23: 1385.

[41]

Ding Z J, Zhao L, Suo L M, Jiao Y, Meng S, Hu Y S, Wang Z X, Chen L Q. Phys. Chem. Chem. Phys., 2011, 13: 15127.

[42]

Liu J, Tang K, Song K P, van Aken P A, Yu Y, Maier J. Nanoscale, 2014, 6: 5081.

[43]

Gao R T, Tan R, Han L, Zhao Y, Wang Z J, Yang LY, Pan F. J. Mater. Chem. A, 2017, 5: 5273.

[44]

Ling R, Cai S, Xie D L, Li X, Wang M J, Lin Y S, Jiang S, Shen K, Xiong K Z, Sun X H. Chem. Eng. J., 2018, 353: 264.

[45]

Li J W, Cao X X, Pan A Q, Zhao Y L, Yang H L, Cao G Z, Liang S Q. Chem. Eng. J., 2018, 335: 301.

[46]

Jian Z L, Han W Z, Lu X, Yang H X, Hu Y S, Zhou J, Zhou Z B, Li J Q, Chen W, Chen D F, Chen L Q. Adv. Energy Mater., 2013, 3: 156.

[47]

Lei Z D, Xu L Q, Jiao Y L, Du A J, Zhang Y, Zhang H J. Small, 2018, 14: 1704410.

[48]

Shen W, Wang C, Xu Q J, Liu H M, Wang Y G. Adv. Energy Mater., 2015, 5: 1400982.

[49]

Brückner R, Tylkowski M, Hupa L, Brauer D S. J. Mater. Chem. B, 201, 4: 3121.

[50]

Shen W, Li H, Wang C, Li Z H, Xu Q J, Liu H M, Wang Y G. J. Mater. Chem. A, 2015, 3: 15190.

[51]

Wei T Y, Yang G Z, Wang C X. Nano Energy, 2017, 39: 363.

[52]

Zheng L L, Xue Y, Hao S E, Wang Z B. Ceram. Int., 2018, 44: 9880.

[53]

Liu H, Cao Q, Fu L J, Li C, Wu Y P. Electrochem. Commun., 200, 8: 1553.

[54]

Qiao Y Q, Wang X L, Xiang J Y, Zhang D, Liu W L, Tu J P. Electrochim. Acta, 2011, 56: 2269.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/