PDF
Abstract
Polymeric devices are the workhorses of modern technologies. As one of the cutting-edge technology leveraging polymeric materials, nanogenerator that could convert micro-/nano-scale mechanical energy into electricity based on the mechanism of piezoelectricity and triboelectricity exhibited great promise for biomedical applications, owning to the simple configuration, high efficiency, decent electrical output, biomimetic property as well as excellent biocompatibility. In this manuscript, the recent representative developments of NGs in biomedical applications are reviewed. Fundamentals, such as working mechanisms underneath different NG prototypes are discussed, which is followed by innovative strategies endowing NG with biomimetic mechanical properties. Intriguing attempts to implement NG in specific biomedical fields(e.g., power source for implantable medical devices, therapeutic electric stimulator, etc.) are introduced and analyzed. This manuscript ends up with subsection summarizing existed challenges while providing potential solutions for future NG developments in biomedical engineering.
Keywords
Nanogenerator
/
Polymeric material
/
Biomedical application
Cite this article
Download citation ▾
Jun Li, Yin Long, Xudong Wang.
Polymer-based Nanogenerator for Biomedical Applications.
Chemical Research in Chinese Universities, 2020, 36(1): 41-54 DOI:10.1007/s40242-020-9085-6
| [1] |
Cowie J. M. G., Arrighi V., Polymers: Chemistry and Physics of Modern Material, CRC Press, 2007
|
| [2] |
Janata J, Josowicz M. Nature Materials, 2003, 2(1): 19.
|
| [3] |
Nalwa H. S., Miyata S., Nonlinear Optics of Organic Molecules and Polymer, CRC Press, 1996
|
| [4] |
Nair L. S., Laurencin C. T., Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery, Tissue Engineering I, Springer, 2005, 47
|
| [5] |
Shit S. C., Shah P. M., Journal of Polymers, 2014, 2014
|
| [6] |
Haupt K, Mosbach K. Chemical Reviews, 2000, 100(7): 2495.
|
| [7] |
Wang Z L, Song J H. Science, 200, 312(5771): 242.
|
| [8] |
Wang X, Song J, Liu J, Wang Z L. Science, 2007, 316(5821): 102.
|
| [9] |
Wang Z L. ACS Nano, 2013, 7(11): 9533.
|
| [10] |
Wang Z L, Chen J, Lin L. Energy & Environmental Science, 2015, 8(8): 2250.
|
| [11] |
Khan U, Kim T H, Ryu H, Seung W, Kim S W. Adv. Mater., 2017, 29(1): 1603544.
|
| [12] |
Wang M, Li W, You C, Wang Q, Zeng X, Chen M. RSC Advances, 2017, 7(11): 6772.
|
| [13] |
Long Y, Yu Y, Yin X, Li J, Carlos C, Du X, Jiang Y, Wang X. Nano Energy, 2019, 57: 558.
|
| [14] |
Yu Y, Wang X. Extreme Mechanics Letters, 201, 9: 514.
|
| [15] |
Mao Y, Geng D, Liang E, Wang X. Nano Energy, 2015, 15: 227.
|
| [16] |
Seol M L, Han J W, Moon D I, Meyyappan M. Nano Energy, 2017, 39: 238.
|
| [17] |
Wang Z L. Nature News, 2017, 542(7640): 159.
|
| [18] |
Wang M, Zhang J, Tang Y, Li J, Zhang B, Liang E, Mao Y, Wang X. ACS Nano, 2018, 12(6): 6156.
|
| [19] |
Yang J, Chen J, Liu Y, Yang W, Su Y, Wang Z L. ACS Nano, 2014, 8(3): 2649.
|
| [20] |
Zhang B, Tang Y, Dai R, Wang H, Sun X, Qin C, Pan Z, Liang E, Mao Y. Nano Energy, 2019, 64: 103953.
|
| [21] |
Tang Y., Zhou H., Sun X., Diao N., Wang J., Zhang B., Qin C., Liang E., Mao Y., Advanced Functional Materials, 2019, 1907893
|
| [22] |
Zhang X S, Su M, Brugger J, Kim B. Nano Energy, 2017, 33: 393.
|
| [23] |
Li J, Wang X. APL Materials, 2017, 5(7): 073801.
|
| [24] |
Feng H, Zhao C, Tan P, Liu R, Chen X, Li Z. Advanced Healthcare Materials, 2018, 7(10): 1701298.
|
| [25] |
Dagdeviren C, Yang B D, Su Y, Tran P L, Joe P, Anderson E, Xia J, Doraiswamy V, Dehdashti B, Feng X, Lu B, Poston R, Khalpey Z, Ghaffari R, Huang Y, Slepian M J, Rogers J A. Proc. Natl. Acad. Sci. USA, 2014, 111(5): 1927.
|
| [26] |
Zheng Q, Shi B, Fan F, Wang X, Yan L, Yuan W, Wang S, Liu H, Li Z, Wang Z L. Adv. Mater., 2014, 26(33): 5851.
|
| [27] |
Dagdeviren C, Li Z, Wang Z L. Annual Review of Biomedical Engineering, 2017, 19(1): 85.
|
| [28] |
Ma Y, Zheng Q, Liu Y, Shi B, Xue X, Ji W, Liu Z, Jin Y, Zou Y, An Z, Zhang W, Wang X, Jiang W, Xu Z, Wang Z L, Li Z, Zhang H. Nano Lett., 201, 16(10): 6042.
|
| [29] |
Cheng X L, Xue X, Ma Y, Han M D, Zhang W, Xu Z Y, Zhang H, Zhang H X. Nano Energy, 201, 22: 453.
|
| [30] |
Zheng Q, Zhang H, Shi B, Xue X, Liu Z, Jin Y, Ma Y, Zou Y, Wang X, An Z, Tang W, Zhang W, Yang F, Liu Y, Lang X, Xu Z, Li Z, Wang Z L. ACS Nano, 201, 10(7): 6510.
|
| [31] |
Murillo G, Blanquer A, Vargas-Estevez C, Barrios L, Ibáñez E, Nogués C, Esteve J. Adv. Mater., 2017, 29(24): 1605048.
|
| [32] |
Jin Y, Seo J, Lee J S, Shin S, Park H J, Min S, Cheong E, Lee T, Cho S W. Adv. Mater., 201, 28(34): 7365.
|
| [33] |
Zheng Q, Zou Y, Zhang Y, Liu Z, Shi B, Wang X, Jin Y, Ouyang H, Li Z, Wang Z L. Sci. Adv., 201, 2(3): e1501478.
|
| [34] |
Fan F R, Tang W, Wang Z L. Advanced Materials, 201, 28(22): 4283.
|
| [35] |
Wang X D. Nano Energy, 2012, 1(1): 13.
|
| [36] |
Briscoe J, Dunn S. Nano Energy, 2015, 14: 15.
|
| [37] |
Chen J, Wang Z L. Joule, 2017, 1(3): 480.
|
| [38] |
Wu H, Huang Y A, Xu F, Duan Y Q, Yin Z P. Advanced Materials, 201, 28(45): 9881.
|
| [39] |
Busch G. Ferroelectrics, 1987, 74(1): 267.
|
| [40] |
Valasek J. Physical review, 1921, 17(4): 475.
|
| [41] |
Mason W P. The Journal of the Acoustical Society of America, 1981, 70(6): 1561.
|
| [42] |
Wu J, Xiao D, Zhu J. Chemical Reviews, 2015, 115(7): 2559.
|
| [43] |
Khan A, Abas Z, Kim H S, Oh I K. Smart Materials and Structures, 201, 25(5): 053002.
|
| [44] |
Caliò R, Rongala U B, Camboni D, Milazzo M, Stefanini C, de Petris G, Oddo C M. Sensors, 2014, 14(3): 4755.
|
| [45] |
Uchino K., The Development of Piezoelectric Materials and the New Perspective, Advanced Piezoelectric Materials, Woodhead Publishing, 2017, 1
|
| [46] |
Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X. Progress in Materials Science, 2015, 68: 1.
|
| [47] |
Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti G Jr, Rödel J. Applied Physics Reviews, 2017, 4(4): 041305.
|
| [48] |
Martins P, Lopes A, Lanceros-Mendez S. Progress in Polymer Science, 2014, 39(4): 683.
|
| [49] |
Li F, Cabral M J, Xu B, Cheng Z, Dickey E C, LeBeau J M, Wang J, Luo J, Taylor S, Hackenberger W. Science, 2019, 364(6437): 264.
|
| [50] |
Yang Z, Zhou S, Zu J, Inman D. Joule, 2018, 2(4): 642.
|
| [51] |
Pan S, Zhang Z. Friction, 2019, 7(1): 2.
|
| [52] |
Matsusaka S, Maruyama H, Matsuyama T, Ghadiri M. Chemical Engineering Science, 2010, 65(22): 5781.
|
| [53] |
Wang Z L. Faraday Discussions, 2015, 176: 447.
|
| [54] |
Pan S, Zhang Z. Journal of Applied Physics, 2017, 122(14): 144302.
|
| [55] |
McCarty L S, Whitesides G M. Angewandte Chemie International Edition, 2008, 47(12): 2188.
|
| [56] |
McCarty L S, Winkleman A, Whitesides G M. Journal of the American Chemical Society, 2007, 129(13): 4075.
|
| [57] |
Someya T, Bao Z, Malliaras G G. Nature, 201, 540(7633): 379.
|
| [58] |
Fung Y. C., Biomechanics: Mechanical Properties of Living Tissues, Springer Science & Business Media, 2013
|
| [59] |
Miller K, Chinzei K. Journal of Biomechanics, 2002, 35(4): 483.
|
| [60] |
Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J. Proc. Natl. Acad. Sci. USA, 2011, 108(45): 18390.
|
| [61] |
Cha S, Kim S M, Kim H, Ku J, Sohn J I, Park Y J, Song B G, Jung M H, Lee E K, Choi B L, Park J J, Wang Z L, Kim J M, Kim K. Nano Lett., 2011, 11(12): 5142.
|
| [62] |
Wang Y R, Zheng J M, Ren G Y, Zhang P H, Xu C. Smart Materials and Structures, 2011, 20(4): 045009.
|
| [63] |
Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X, Wang X D. Advanced Energy Materials, 2014, 4(7): 1301624.
|
| [64] |
Sun C L, Shi J, Bayerl D J, Wang X D. Energy & Environmental Science, 2011, 4(11): 4508.
|
| [65] |
Zhang Z Y, Yao C H, Yu Y H, Hong Z L, Zhi M J, Wang X D. Advanced Functional Materials, 201, 26(37): 6760.
|
| [66] |
Yu Y, Sun H, Orbay H, Chen F, England C G, Cai W, Wang X. Nano Energy, 201, 27: 275.
|
| [67] |
Li J, Kang L, Yu Y, Long Y, Jeffery J J, Cai W, Wang X. Nano Energy, 2018, 51: 728.
|
| [68] |
Donelan J M, Li Q, Naing V, Hoffer J, Weber D, Kuo A D. Science, 2008, 319(5864): 807.
|
| [69] |
Li J, Kang L, Long Y, Wei H, Yu Y, Wang Y, Ferreira C A, Yao G, Zhang Z, Carlos C. ACS Applied Materials & Interfaces, 2018, 10(49): 42030.
|
| [70] |
Murillo G, Blanquer A, Vargas-Estevez C, Barrios L, Ibáñez E, Nogués C, Esteve J. Advanced Materials, 2017, 29(24): 1605048.
|
| [71] |
Guo W, Zhang X, Yu X, Wang S, Qiu J, Tang W, Li L, Liu H, Wang Z L. ACS Nano, 201, 10(5): 5086.
|
| [72] |
Jin Y, Seo J, Lee J S, Shin S, Park H J, Min S, Cheong E, Lee T, Cho S W. Advanced Materials, 201, 28(34): 7365.
|
| [73] |
Long Y, Wei H, Li J, Yao G, Yu B, Ni D, Gibson A L, Lan X, Jiang Y, Cai W. ACS Nano, 2018, 12(12): 12533.
|
| [74] |
Yao G, Kang L, Li J, Long Y, Wei H, Ferreira C A, Jeffery J J, Lin Y, Cai W, Wang X. Nature Communications, 2018, 9(1): 5349.
|
| [75] |
Yao G, Jiang D, Li J, Kang L, Chen S, Long Y, Wang Y, Huang P, Lin Y, Cai W. ACS Nano, 2019, 13(11): 12345.
|
| [76] |
Luo J, Wang Z L. Energy Storage Materials, 2019, 23: 617.
|
| [77] |
Mulpuru S K, Madhavan M, McLeod C J, Cha Y M, Friedman P A. Journal of the American College of Cardiology, 2017, 69(2): 189.
|