Reconfigurable Plasmonic Nanostructures Controlled by DNA Origami

Qipeng Long , Hanyang Yu , Zhe Li

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 296 -300.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 296 -300. DOI: 10.1007/s40242-020-9078-5
Article

Reconfigurable Plasmonic Nanostructures Controlled by DNA Origami

Author information +
History +
PDF

Abstract

Precise surface functionalization and reconfigurable capability of nanomaterials are essential to construct complex nanostructures with specific functions. Here we show the assembly of a reconfigurable plasmonic nanostructure, which executes both conformational and plasmonic changes in response to DNA strands. In this work, different sized gold nanoparticles(AuNPs) were arranged site-specifically on the surface of a DNA origami clamp nanostructure. The opening and closing of the DNA origami clamp could be precisely controlled by a series of strand displacement reactions. Therefore, the patterns of these AuNPs could be switched between two different configurations. The observed plasmon band shift indicates the change of the plasmonic interactions among the assembled AuNPs. Our study achieves the construction of reconfigurable nanomaterials with tunable plasmonic interactions, and will enrich the toolbox of DNA-based functional nanomachinery.

Keywords

DNA origami / Gold nanoparticle / Reconfigurable nanostructure / Plasmonic nanostructure

Cite this article

Download citation ▾
Qipeng Long, Hanyang Yu, Zhe Li. Reconfigurable Plasmonic Nanostructures Controlled by DNA Origami. Chemical Research in Chinese Universities, 2020, 36(2): 296-300 DOI:10.1007/s40242-020-9078-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hariadi R F, Cale M, Sivaramakrishnan S. Proc. Natl. Acad. Sci. U.S.A., 2014, 111(11): 4091.

[2]

Lin C X, Jungmann R, Leifer A M, Li C, Levner D, Church G M, Shih W M, Yin P. Nat. Chem., 2012, 4(10): 832.

[3]

Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J, Cui Y. Nat. Nanotech., 201, 11: 626.

[4]

Wang C Y, Xia K L, Wang H M, Liang X P, Yin Z, Zhang Y Y. Adv. Mater., 2019, 31(9): 1801072.

[5]

Copp S M, Schultz D E, Swasey S, Gwinn E G. ACS Nano, 2015, 9(3): 2303.

[6]

Lohse S E, Murphy C J. J. Am. Chem. Soc., 2012, 134(38): 15607.

[7]

Pawar A B, Kretzschmar I. Langmuir, 2009, 25(16): 9057.

[8]

Zhang G, Wang D Y, Möhwald H. Nano Lett., 2005, 5(1): 143.

[9]

Jones M R, Osberg K D, Macfarlane R J, Langille M R, Mirkin C A. Chem. Rev., 2011, 111(6): 3736.

[10]

Shen C Q, Lan X, Lu X X, Nia W H, Wang Q B. Chem. Commun., 2015, 51(71): 13627.

[11]

Urban M J, Dutta P K, Wang P F, Duan X Y, Shen X B, Ding B Q, Ke Y G, Liu N. J. Am. Chem. Soc., 201, 138(17): 5495.

[12]

Tian Y, Wang T, Liu W Y, Xin H L, Li H L, Ke Y G, Shih W M, Gang O. Nat. Nanotechnol., 2015, 10: 637.

[13]

Gür F N, Schwarz F W, Ye J J, Diez S, Schmidt T L. ACS Nano, 201, 10(5): 5374.

[14]

Deng Z T, Samanta A, Nangreave J, Yan H, Liu Y. J. Am. Chem. Soc., 2012, 134(42): 17424.

[15]

Pilo-Pais M, Watson A, Demers S, LaBean T H, Finkelstein G. Nano Lett., 2014, 14(4): 2099.

[16]

Pal S, Dutta P, Wang H N, Deng Z T, Zou S L, Yan H, Liu Y. J. Phys. Chem. C, 2013, 117(24): 12735.

[17]

Rothemund P W K. Nature, 200, 440(7082): 297.

[18]

Hong F, Zhang F, Liu Y, Yan H. Chem. Rev., 2017, 117(20): 12584.

[19]

Schreiber R, Do J, Roller E M, Zhang T, Schüller V J, Nickels P C, Feldmann J, Liedl T. Nat. Nanotech., 2013, 9: 74.

[20]

Vincenzo A, Roberto P, Marco F, Onofrio M M, Maria A I. J. Phys. Condens. Matter., 2017, 29(20): 203002.

[21]

Manheller M, Karthäuser S, Waser R, Blech K, Simon U. J. Phys. Chem. C, 2012, 116(39): 20657.

[22]

Yang X, Yang M X, Pang B, Vara M, Xia Y N. Chem. Rev., 2015, 115(19): 10410.

[23]

Zhao W A, Chiuman W, Lam J C F, McManus S A, Chen W, Cui Y G, Pelton R, Brook M A, Li Y F. J. Am. Chem. Soc., 2008, 130(11): 3610.

[24]

Zeng Y Y, Zhang D, Wu M, Liu Y, Zhang X, Li L, Li Z, Han X, Wei X Y, Liu X L. ACS Appl. Mater. Interfaces, 2014, 6(16): 14266.

[25]

Ding B Q, Deng Z T, Yan H, Cabrini S, Zuckermann R N, Bokor J. J. Am. Chem. Soc., 2010, 132(10): 3248.

[26]

Shen X B, Song C, Wang J Y, Shi D W, Wang Z G, Liu N, Ding B Q. J. Am. Chem. Soc., 2012, 134(1): 146.

[27]

Kuzyk A, Schreiber R, Fan Z Y, Pardatscher G, Roller E M, Högele A, Simmel F C, Govorov A O, Liedl T. Nature, 2012, 483(7389): 311.

[28]

Zhou C, Duan X Y, Liu N. Nat. Commun., 2015, 6(1): 8102.

[29]

Urban M J, Both S, Zhou C, Kuzyk A, Lindfors K, Weiss T, Liu N. Nat. Commun., 2018, 9(1): 1454.

[30]

Shen C Q, Lan X, Lu X X, Meyer T A, Ni W H, Ke Y G, Wang Q B. J. Am. Chem. Soc., 201, 138(6): 1764.

[31]

Bohren C F, Huffman D R. Opt. Laser Technol., 1998, 31: 328.

[32]

Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107(3): 668.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/