Remarkably Enhanced Hydrogen Oxidation Reaction Activity of Carbon-supported Pt by Facile Nickel Modification

Xuewei Huang , Chang Long , Jianyu Han , Jing Zhang , Xueying Qiu , Zhiyong Tang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 105 -109.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 105 -109. DOI: 10.1007/s40242-020-9074-9
Article

Remarkably Enhanced Hydrogen Oxidation Reaction Activity of Carbon-supported Pt by Facile Nickel Modification

Author information +
History +
PDF

Abstract

Developing high activity catalysts for hydrogen oxidation reaction(HOR) under alkaline condition remains a challenge in the exchange membrane fuel cell(AEMFC). Herein, we report that the activity of carbon-supported platinum(Pt/C) towards the hydrogen oxidation reaction(HOR) in alkaline media can be remarkably enhanced by simple immersion of Pt/C in nickel chloride solution. The adsorption of hydrogen on the catalyst surface is weakened by modification of nickel. The HOR activity on the Pt/C after immersion possesses an excellent mass current density of 33.4 A/gmetal, which is 18% higher than that(28.3 A/gmetal) on Pt/C.

Keywords

Electrocatalyst / Hydrogen oxidation / Pt/C / Modified nickel

Cite this article

Download citation ▾
Xuewei Huang, Chang Long, Jianyu Han, Jing Zhang, Xueying Qiu, Zhiyong Tang. Remarkably Enhanced Hydrogen Oxidation Reaction Activity of Carbon-supported Pt by Facile Nickel Modification. Chemical Research in Chinese Universities, 2020, 36(1): 105-109 DOI:10.1007/s40242-020-9074-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bockris J. Science, 1972, 176: 1323.

[2]

Koper M T. Nat. Chem., 2013, 5: 255.

[3]

Lefèvre M, Proietti E, Jaouen F, Dodelet J. Science, 2009, 324: 71.

[4]

Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443.

[5]

Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J P, Wu G, Chung H T, Johnston C M, Zelenay P. Energy Environ. Sci., 2011, 4: 114.

[6]

Yang L J, Shui J G, Du L, Shao Y Y, Liu J, Dai L M, Hu Z. Adv. Mater., 2019, 31: 1804799.

[7]

Yin P Q, Yao T, Wu Y, Zheng L R, Lin Y, Liu W, Ju H X, Zhu J F, Hong X, Deng Z X, Zhou G, Wei S Q, Li Y D. Angew. Chem. Int. Ed., 201, 55: 10800.

[8]

Zhou S, Liu N S, Wang Z Y, Zhao J J. ACS Appl. Mater. Interfaces, 2017, 9: 22578.

[9]

Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen R A, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2017, 56: 6937.

[10]

Yang Y, Mao K T, Gao S Q, Huang H, Xia G L, Lin Z Y, Jiang P, Wang C L, Wang H, Chen Q W. Adv. Mater., 2018, 30: 1801732.

[11]

Li J, Chen S G, Deng M M, Ibraheem S, Deng J H, Li J, Li L, Wei Z D. Angew. Chem. Int. Ed., 2019, 58: 7035.

[12]

Sheng W C, Gasteiger H A, Shao-Horn Y. J. Electrochem. Soc., 2010, 157: B1529.

[13]

Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger H A. Energy Environ. Sci., 2014, 7: 2255.

[14]

Sheng W C, Zhuang Z B, Gao M R, Zheng J, Chen J G, Yan Y S. Nat. Commun., 2015, 6: 5848.

[15]

Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y S. Sci. Adv., 201, 2: e1501602.

[16]

Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Nat. Chem., 2013, 5: 300.

[17]

Wang Y, Wang G, Li G, Huang B, Pan J, Liu Q, Han J, Xiao L, Lu J, Zhuang L. Energy Environ. Sci., 2015, 8: 177.

[18]

Lu S Q, Zhuang Z B. J. Am. Chem. Soc., 2017, 139: 5156.

[19]

Wang H, Abruña H D. ACS Catal., 2019, 9: 5057.

[20]

Li Q H, Peng H Q, Wang Y M, Xiao L, Lu J T, Zhuang L. Angew. Chem. Int. Ed., 2019, 58: 1442.

[21]

Lu L J, Peng L S, Li L, Li J, Huang X, Wei Z D. J. Energy Chem., 2020, 40: 52.

[22]

Yang X, Nash J, Oliveira N, Yan Y S, Xu B J. Angew. Chem. Int. Ed., 2019, 58: 2.

[23]

Qin B W, Yu H M, Chi J, Jia J, Gao X Q, Yao D W, Yi B L, Shao Z G. RSCAdv., 2017, 7: 31574.

[24]

Qin B W, Yu H M, Gao X Q, Yao D W, Sun X Y, Song W, Yi B L, Shao Z G. J. Mater. Chem. A, 2018, 6: 20374.

[25]

Cong Y Y, McCrum I T, Gao X Q, Lv Y, Miao S, Shao Z G, Yi B L, Yu H M, Janik M J, Song Y J. J. Mater. Chem. A, 2019, 7: 3161.

[26]

Kim C, Jeon H S, Eom T, Jee M S, Kim H, Friend CM, Min B K, Hwang Y J. J. Am. Chem. Soc., 2015, 137: 13844.

[27]

Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Nat. Mater., 2011, 10: 780.

[28]

Campos-Roldán C A, Gonález-Huerta R G, Alonso-Vante N. J. Electrochem. Soc., 2018, 165: J3001.

[29]

Scofield M E, Zhou Y, Yue S, Wang L, Su D, Tong X, Vukmirovic M B, Adzic R R, Wong S S. ACS Catal., 201, 6: 3895.

[30]

Dang D, Zou H B, Xiong Z A, Hou S Y, Shu T, Nan H X, Zeng X Y, Zeng J H, Liao S J. ACS Catal., 2015, 5: 4318.

[31]

Diao W, Tengco J M M, Regalbuto J R, Monnier J R. ACS Catal., 2015, 5: 5123.

[32]

Tolman C A, Riggs W M, Linn W J, King C M, Wendt R C. Inorg. Chem., 1973, 12: 2770.

[33]

Jin Y C, Chen F Y, Wang J L, Guo L F, Jin T, Liu H Z. J. Power Sources, 2019, 435: 226798.

[34]

Wang T T, Wang M, Yang H, Xu M Q, Zuo C D, Feng K, Xie M, Deng J, Zhong J, Zhou W, Cheng T, Li Y G. Energy Environ. Sci., 2019, 12: 3522.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/