Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices

Mengying Deng , Min Li , Xiuhai Mao , Fan Li , Xiaolei Zuo

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 185 -193.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 185 -193. DOI: 10.1007/s40242-020-9073-x
Review

Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices

Author information +
History +
PDF

Abstract

Nucleic acid probes in living organisms play an essential role in therapeutics and diagnosis. Through the imaging and sensing of nucleic acid probes in complex biological matrices, a variety of diseases-related biological process, pathogenic process, or pharmacological responses to a therapeutic intervention have been discovered. However, a critical challenge of nucleic acid probes applied in complex matrices lies in enhancing the stability of nucleic acid probes, especially when it suffers from nuclease degradation and protein adsorption. In order to enhance the application of nucleic acid nanoprobes in complex matrices, great efforts have been devoted to improving the stability of probes operated in complex media, including construction of nucleic acid nanoprobes with nuclease resistance and protein adsorption resistance, sample pretreatment, anti-biofouling and signal correction. In this review, we aim to summarize recent advances in the stability of nucleic acid nanoprobes in complex matrices, including the methods of enhancing the stability of probes or signals, and the application of nucleic acid nanoprobes for disease diagnosis.

Keywords

Nuclease-resistance / Complex matrix / Nucleic acid probe / Stability

Cite this article

Download citation ▾
Mengying Deng, Min Li, Xiuhai Mao, Fan Li, Xiaolei Zuo. Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices. Chemical Research in Chinese Universities, 2020, 36(2): 185-193 DOI:10.1007/s40242-020-9073-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Williams K A, Veenhuizen P T M, de la Torre B G, Eritja R, Dekker C. Nature, 2002, 420(6917): 761.

[2]

Klug A, Rhodes D. Trends Biochem. Sci., 1987, 12: 464.

[3]

Forster A C, Symons R H. Cell, 1987, 49(2): 211.

[4]

Sen D, Gilbert W. Nature, 1988, 334(6180): 364.

[5]

Parkinson G N, Lee M P H, Neidle S. Nature, 2002, 417(6891): 876.

[6]

Zeraati M, Langley D B, Schofield P, Moye A L, Rouet R, Hughes W E, Bryan T M, Dinger M E, Christ D. Nat. Chem., 2018, 10(6): 631.

[7]

Day H A, Pavlou P, Waller Z A E. Bioorg. Med. Chem, 2014, 22(16): 4407.

[8]

Song P, Ye D, Zuo X, Li J, Wang J, Liu H, Hwang M T, Chao J, Su S, Wang L, Shi J, Wang L, Huang W, Lal R, Fan C. Nano Lett., 2017, 17(9): 5193.

[9]

Lou X, Zhuang Y, Zuo X, Jia Y, Hong Y, Min X, Zhang Z, Xu X, Liu N, Xia F, Tang B Z. Anal. Chem., 2015, 87(13): 6822.

[10]

Abi A, Mohammadpour Z, Zuo X, Safavi A. Biosens. Bioelectron., 2018, 102: 479.

[11]

Lin M, Yi X, Huang F, Ma X, Zuo X, Xia F. Anal. Chem., 2019, 91(3): 2021.

[12]

Kaiser C E, van Ert N A, Agrawal P, Chawla R, Yang D, Hurley L H. J. Am. Chem. Soc., 2017, 139(25): 8522.

[13]

Brown R V, Wang T, Chappeta V R, Wu G, Onel B, Chawla R, Quijada H, Camp S M, Chiang E T, Lassiter Q R, Lee C, Phanse S, Turnidge M A, Zhao P, Garcia J G N, Gokhale V, Yang D, Hurley L H. J. Am. Chem. Soc., 2017, 139(22): 7456.

[14]

Huppert J L, Balasubramanian S. Nucleic Acids Res., 2005, 33(9): 2908.

[15]

Chambers V S, Marsico G, Boutell J M, Di Antonio M, Smith G P, Balasubramanian S. Nat. Biotechnol., 2015, 33(8): 877.

[16]

Rodriguez R, Miller K M. Nat. Rev. Genet., 2014, 15(12): 783.

[17]

Wolfe A L, Singh K, Zhong Y, Drewe P, Rajasekhar V K, Sanghvi V R, Mavrakis K J, Jiang M, Roderick J E, van der Meulen J, Schatz J H, Rodrigo C M, Zhao C, Rondou P, de Stanchina E, Teruya-Feldstein J, Kelliher M A, Speleman F, Porco J A, Pelletier J, Rätsch G, Wendel H G. Nature, 2014, 513(7516): 65.

[18]

Takahashi S, Brazier J A, Sugimoto N. Proc. Natl. Acad. Sci. USA, 2017, 114(36): 9605.

[19]

Leung K, Chakraborty K, Saminathan A, Krishnan Y. Nat. Nanotechnol., 2019, 14(2): 176.

[20]

Zhang F, Hong F, Yan H. Nat. Nanotechnol., 201, 12(3): 189.

[21]

Song P, Li M, Shen J, Pei H, Chao J, Su S, Aldalbahi A, Wang L, Shi J, Song S, Wang L, Fan C, Zuo X. Anal. Chem., 201, 88(16): 8043.

[22]

Mohammed A M, Šulc P, Zenk J, Schulman R. Nat. Nanotechnol., 201, 12(4): 312.

[23]

Veetil A T, Chakraborty K, Xiao K, Minter M R, Sisodia S S, Krishnan Y. Nat. Nanotechnol., 2017, 12: 1183.

[24]

Praetorius F, Kick B, Behler K L, Honemann M N, Weuster-Botz D, Dietz H. Nature, 2017, 552(7683): 84.

[25]

Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. Science, 2011, 332(6027): 342.

[26]

Cassinelli V, Oberleitner B, Sobotta J, Nickels P, Grossi G, Kempter S, Frischmuth T, Liedl T, Manetto A. Angew. Chem., Int. Ed., 2015, 54(27): 7795.

[27]

Ponnuswamy N, Bastings M M C, Nathwani B, Ryu J H, Chou L Y T, Vinther M, Li W A, Anastassacos F M, Mooney D J, Shih W M. Nat. Commun., 2017, 8: 15654.

[28]

Zaitseva M, Kaluzhny D, Shchyolkina A, Borisova O, Smirnov I, Pozmogova G. Biophys. Chem., 2010, 146(1): 1.

[29]

Kiviaho J K, Linko V, Ora A, Tiainen T, Jarvihaavisto E, Mikkila J, Tenhu H, Nonappa, Kostiainen M A. Nanoscale, 201, 8(22): 11674.

[30]

Rosi N L, Giljohann D A, Thaxton C S, Lytton-Jean A K R, Han M S, Mirkin C A. Science, 200, 312(5776): 1027.

[31]

Li H, Zhang B, Lu X, Tan X, Jia F, Xiao Y, Cheng Z, Li Y, Silva D O, Schrekker H S, Zhang K, Mirkin C A. Proc. Natl. Acad. Sci. USA, 2018, 115(17): 4340.

[32]

Daggumati P, Appelt S, Matharu Z, Marco M L, Seker E. J. Am. Chem. Soc., 201, 138(24): 7711.

[33]

Arroyo-Currás N, Somerson J, Vieira P A, Ploense K L, Kippin T E, Plaxco K W. Proc. Natl. Acad. Sci. USA, 2017, 114(4): 645.

[34]

Li H, Dauphin-Ducharme P, Arroyo-Currás N, Tran C H, Vieira P A, Li S, Shin C, Somerson J, Kippin T E, Plaxco K W. Angew. Chem., Int. Ed., 2017, 56(26): 7492.

[35]

Li H, Arroyo-Currás N, Kang D, Ricci F, Plaxco K W. J. Am. Chem. Soc., 201, 138(49): 15809.

[36]

Li H, Dauphin-Ducharme P, Ortega G, Plaxco K W. J. Am. Chem. Soc., 2017, 139(32): 11207.

[37]

Ferguson B S, Hoggarth D A, Maliniak D, Ploense K, White R J, Woodward N, Hsieh K, Bonham A J, Eisenstein M, Kippin T E, Plaxco K W, Soh H T. Sci. Transl. Med., 2013, 5(213): 213ra165.

[38]

Kawane K, Motani K, Nagata S. Cold Spring Harb Perspect Biol., 2014, 6(6): a016394.

[39]

Leong K W, Mao H Q, Truong-Le V L, Roy K, Walsh S M, August J T. J. Controlled Release, 1998, 53(1): 183.

[40]

Yao W, Mei C, Nan X, Hui L. Gene, 201, 590(1): 142.

[41]

Eun H M. In Enzymology Primer for Recombinant DNA Technology, 1996, San Diego: Academic Press

[42]

Conway J W, McLaughlin C K, Castor K J, Sleiman H. Chem. Commun., 2013, 49(12): 1172.

[43]

Liu M, Yin Q, Chang Y, Zhang Q, Brennan J D, Li Y. Angew. Chem., Int. Ed., 2019, 58(24): 8013.

[44]

Di Giusto D A, King G C. J. Biol. Chem., 2004, 279(45): 46483.

[45]

Ni S, Yao H, Wang L, Lu J, Jiang F, Lu A, Zhang G. Int. J. Mol. Sci., 2017, 18(8): 1683.

[46]

Turner J J, Jones S W, Moschos S A, Lindsay M A, Gait M J. Molecular BioSystems, 2007, 3(1): 43.

[47]

Deleavey G F, Watts J K, Damha M J. Curr. Protoc. Nucleic Acid Chem., 2009, 39(1): 16.3.1.

[48]

Dougan H, Lyster D M, Vo C V, Stafford A, Weitz J I, Hobbs J B. Nucl. Med. Biol., 2000, 27(3): 289.

[49]

Liu Q, Liu G, Wang T, Fu J, Li R, Song L, Wang Z G, Ding B, Chen F. ChemPhysChem, 2017, 18(21): 2977.

[50]

Bratu D P, Cha B J, Mhlanga M M, Kramer F R, Tyagi S. Proc. Natl. Acad. Sci. USA, 2003, 100(23): 13308.

[51]

Deleavey G F, Damha M J. Chem. Biol., 2012, 19(8): 937.

[52]

Watts J K, Corey D R. J. Pathol., 2012, 226(2): 365.

[53]

Liu Q, Ge Z, Mao X, Zhou G, Zuo X, Shen J, Shi J, Li J, Wang L, Chen X. Angew. Chem., Int. Ed., 2018, 57(24): 7131.

[54]

Sze J Y Y, Ivanov A P, Cass A E G, Edel J B. Nat. Commun., 2017, 8(1): 1552.

[55]

Valkama A J, Leinonen H M, Lipponen E M, Turkki V, Malinen J, Heikura T, Ylä-Herttuala S, Lesch H P. Gene Ther., 2017, 25(1): 39.

[56]

Tay C Y, Yuan L, Leong D T. ACS Nano, 2015, 9(5): 5609.

[57]

Zheng X, Peng R, Jiang X, Wang Y, Xu S, Ke G, Fu T, Liu Q, Huan S, Zhang X. Anal. Chem., 2017, 89(20): 10941.

[58]

Jiang D, Sun Y, Li J, Li Q, Lv M, Zhu B, Tian T, Cheng D, Xia J, Zhang L, Wang L, Huang Q, Shi J, Fan C. ACS Appl. Mater. Interfaces, 201, 8(7): 4378.

[59]

Keum J. W., Bermudez H., Chem. Commun., 2009, (45), 7036

[60]

Mo Y, Turner K T, Szlufarska I. Nature, 2009, 457(7233): 1116.

[61]

Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J. J. Am. Chem. Soc., 2010, 132(10): 3248.

[62]

Li Z, Liu M, Wang L, Nangreave J, Yan H, Liu Y. J. Am. Chem. Soc., 2010, 132(38): 13545.

[63]

Schreiber R, Kempter S, Holler S, Schüller V, Schiffels D, Simmel S S, Nickels P C, Liedl T. Small, 2011, 7(13): 1795.

[64]

Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N. ACS Nano, 2011, 5(3): 2240.

[65]

Jiang Z, Zhang S, Yang C, Kjems J, Huang Y, Besenbacher F, Dong M. Nano Res., 2015, 8(7): 2170.

[66]

Mei Q, Wei X, Su F, Liu Y, Youngbull C, Johnson R, Lindsay S, Yan H, Meldrum D. Nano Lett., 2011, 11(4): 1477.

[67]

Castro C E, Kilchherr F, Kim D N, Shiao E L, Wauer T, Wortmann P, Bathe M, Dietz H. Nat. Methods, 2011, 8(3): 221.

[68]

Lanier L A, Bermudez H. Curr. Opin. Chem. Eng., 2015, 7: 93.

[69]

Hamblin G D, Carneiro K M M, Fakhoury J F, Bujold K E, Sleiman H F. J. Am. Chem. Soc., 2012, 134(6): 2888.

[70]

Agarwal N P, Matthies M, Gur F N, Osada K, Schmidt T L. Angew. Chem., Int. Ed., 2017, 56(20): 5460.

[71]

Cerda-Cristerna B I, Flores H, Pozos-Guillén A, Pérez E, Sevrin C, Grandfils C. J. Controlled Release, 2011, 153(3): 269.

[72]

Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. Biomaterials, 2003, 24(7): 1121.

[73]

van Vlerken L E, Vyas T K, Amiji M M. Pharm. Res., 2007, 24(8): 1405.

[74]

Jiang Q, Zhao S, Liu J, Song L, Wang Z-G, Ding B. Adv. Drug Deliv. Rev., 2019, 147: 2.

[75]

Auvinen H, Zhang H, Nonappa, Kopilow A, Niemelä H, Nummelin S, Correia A, Santos H A, Linko V, Kostiainen M A. Adv. Healthcare Mater., 2017, 6(18): 1700692.

[76]

Alhasan A H, Patel P C, Choi C H J, Mirkin C A. Small, 2014, 10(1): 186.

[77]

Prigodich A E, Seferos D S, Massich M D, Giljohann D A, Lane B C, Mirkin C A. ACS Nano, 2009, 3(8): 2147.

[78]

Halo T L, McMahon K M, Angeloni N L, Xu Y, Wang W, Chinen A B, Malin D, Strekalova E, Cryns V L, Cheng C, Mirkin C A, Thaxton C S. Proc. Natl. Acad. Sci. USA, 2014, 111(48): 17104.

[79]

Deng M, Li M, Li F, Mao X, Li Q, Shen J, Fan C, Zuo X. ACS Mater. Lett., 2019, 1: 671.

[80]

Seferos D S, Prigodich A E, Giljohann D A, Patel P C, Mirkin C A. Nano Lett., 2009, 9(1): 308.

[81]

Cutler J I, Auyeung E, Mirkin C A. J. Am. Chem. Soc., 2012, 134(3): 1376.

[82]

Perrault S D, Shih W M. ACS Nano, 2014, 8(5): 5132.

[83]

Barnaby S N, Perelman G A, Kohlstedt K L, Chinen A B, Schatz G C, Mirkin C A. Bioconjugate Chem., 201, 27(9): 2124.

[84]

Mage P L, Ferguson B S, Maliniak D, Ploense K L, Kippin T E, Soh H T. Nat. Biomed. Eng., 2017, 1(5): 0070.

[85]

Tavallaie R, McCarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, Tilley R D, Hibbert D B, Kavallaris M, Gooding J J. Nat. Nanotechnol., 2018, 13(11): 1066.

[86]

Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C. Nat. Protoc., 201, 11(7): 1244.

[87]

Lin M, Wen Y, Li L, Pei H, Liu G, Song H, Zuo X, Fan C, Huang Q. Anal. Chem., 2014, 86(5): 2285.

[88]

Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C. Anal. Chem., 2011, 83(19): 7418.

[89]

Li H, Arroyo-Currás N, Kang D, Ricci F, Plaxco K W. J. Am. Chem. Soc., 201, 138(49): 15809.

[90]

Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Anal. Chem., 2014, 86(4): 2124.

[91]

Liu Q, Ge Z, Mao X, Zhou G, Zuo X, Shen J, Shi J, Li J, Wang L, Chen X, Fan C. Angew. Chem., Int. Ed., 2018, 57(24): 7131.

[92]

Choi H M T, Chang J Y, Trinh L A, Padilla J E, Fraser S E, Pierce N A. Nat. Biotechnol., 2010, 28(11): 1208.

[93]

Zhang D Y, Turberfield A J, Yurke B, Winfree E. Science, 2007, 318(5853): 1121.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/