Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion

Chao Yang , Hao-Fan Wang , Qiang Xu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 10 -23.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 10 -23. DOI: 10.1007/s40242-020-9068-7
Review

Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion

Author information +
History +
PDF

Abstract

With the increased energy demand, developing renewable and clean energy technologies becomes more and more significant to mitigate climate warming and alleviate the environmental pollution. The key point is design and synthesis of low cost and efficient materials for a wide variety of electrochemical reactions. Over the past ten years, two-dimensional(2D) nanomaterials that graphene represents have been paid much attention as a class of the most promising candidates for heterogeneous electrocatalysts in electrochemical storage and conversion. Their unique properties, such as good chemical stability, good flexibility, and good electronic properties, along with their nano-sized thickness and large specific area, make them exhibit comprehensively good performances for energy storage and conversion. Here, we present an overview on the recent advances in electrochemical applications of graphene, graphdiyne, transition metal dichalcogenides(TMDs), and MXenes for supercapacitors(SCs), oxygen reduction reaction (ORR), and hydrogen evolution reaction(HER).

Keywords

Two-dimensional material / Graphene / Graphdiyne / Layered transition-metal dichalcogenide / MXene / Energy storage and conversion

Cite this article

Download citation ▾
Chao Yang, Hao-Fan Wang, Qiang Xu. Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36(1): 10-23 DOI:10.1007/s40242-020-9068-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.

[2]

Sakamoto Ryota, Fukui Naoya, Maeda Hiroaki, Matsuoka Ryota, Toyoda Ryojun, Nishihara Hiroshi. The Accelerating World of Graphdiynes. Advanced Materials, 2019, 31(42): 1804211.

[3]

Chhowalla M, Shin H S, Eda G, Li L J, Loh K, Zhang H. Nat. Chem., 2013, 5: 263.

[4]

Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516: 78.

[5]

Lin Y, Williams T V, Connell J W. J. Phys. Chem. Lett., 2010, 1: 277.

[6]

Zhang J, Chen Y, Wang X. Energy Environ. Sci., 2015, 8: 3092.

[7]

Wang Q, O’Hare D. Chem. Rev., 2012, 112: 4124.

[8]

Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H. Chem. Rev., 2018, 118: 6409.

[9]

Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346: 1356.

[10]

Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R. Science, 2011, 332: 228.

[11]

Kory M J, Wörle M, Weber T, Payamyar P, van de Poll S W, Dshemuchadse J, Trapp N, Schlüter A D. Nat. Chem., 2014, 6: 779.

[12]

Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Nat. Nanotechnol, 2014, 9: 372.

[13]

Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Science, 2015, 349: 1518.

[14]

Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Chem. Rev., 2018, 118: 6337.

[15]

Sial M A Z G, Din M A U, Wang X. Chem. Soc. Rev., 2018, 47: 6175.

[16]

Wang X, Weng Q, Yang Y, Bando Y, Golberg D. Chem. Soc. Rev., 201, 45: 4042.

[17]

Wang X, Sun G, Lia N, Chen P. Chem. Soc. Rev., 201, 45: 2239.

[18]

Xue Y, Zhang Q, Wang W, Cao H, Yang Q, Fu L. Adv. Energy Mater., 2017, 7: 1602684.

[19]

Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117: 6225.

[20]

Kumar A, Xu Q. Chem. Nano Mat., 2018, 4: 28.

[21]

Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013, 340: 1226419.

[22]

Cai X., Luo Y., Liu B., Cheng H. M., Chem. Soc. Rev., 2018, 47

[23]

Zhang X, Xie Y. Chem. Soc. Rev., 2013, 42: 8187.

[24]

Sun Y, Gao S, Xie Y. Chem. Soc. Rev., 2014, 43: 530.

[25]

Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Proc. Natl. Acad. Sci., 2005, 102: 10451.

[26]

Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Science, 2011, 331: 568.

[27]

Huang X, Zeng Z, Zhang H. Chem. Soc. Rev., 2013, 42: 1934.

[28]

Dong L, Yang J, Chhowalla M, Loh K P. Chem. Soc. Rev., 2017, 46: 7306.

[29]

Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2: 16098.

[30]

Dines M B. Mater. Res. Bull., 1975, 10: 287.

[31]

Hummers W, Offeman R. J. Am. Chem. Soc., 1958, 80: 1339.

[32]

Paton K R, Varrla E, Backes C, Smith R J, Khan U, O’Neill A, Boland C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien S E, McGuire E K, Sanchez B M, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V, Coleman J N. Nat. Mater., 2014, 13: 624.

[33]

Matsumoto M, Saito Y, Park C, Fukushima T, Aida T. Nat. Chem., 2015, 7: 730.

[34]

Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. Nat. Nanotechnol., 2008, 3: 563.

[35]

Yu J, Li J, Zhang W, Chang H. Chem. Sci., 2015, 6: 6705.

[36]

Zhang Y, Zhang L, Zhou C. Acc. Chem. Res., 2013, 46: 2329.

[37]

Ji Q, Zhang Y, Zhang Y, Liu Z. Chem. Soc. Rev., 2015, 44: 2587.

[38]

Shi Y, Li H, Li L J. Chem. Soc. Rev., 2015, 44: 2744.

[39]

Du X, Skachko I, Barker A, Andrei E Y. Nat. Nanotechnol., 2008, 3: 491.

[40]

Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Appl. Phys. Lett., 2008, 92: 42116.

[41]

Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. NanoLett., 2008, 8: 902.

[42]

Lee C, Wei X D, Kysar J W, Hone J. Science, 2008, 321: 385.

[43]

Novoselov K S. ECS Transactions, 2009, 19: 3.

[44]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[45]

Dai L, Xue Y, Qu L, Choi H J, Baek J B. Chem. Rev., 2015, 115: 4823.

[46]

Yang C, Dong L, Chen Z, Lu H. J. Phys. Chem. C, 2014, 118: 18884.

[47]

Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, García H. Chem. Soc. Rev., 2017, 46: 4501.

[48]

Asefa T. Acc. Chem. Res., 201, 49: 1873.

[49]

Wu P, Du P, Zhang H, Cai C. Phys. Chem. Chem. Phys., 2013, 15: 6920.

[50]

Rani P, Jindal V K. RSC Adv., 2013, 3: 802.

[51]

Kong X, Chen Q, Sun Z. ChemPhysChem, 2013, 14: 514.

[52]

Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51: 11496.

[53]

Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43: 7067.

[54]

Karlicky F, Datta K K R, Otyepka M, Zboril R. ACS Nano, 2013, 7: 6434.

[55]

Jeon I Y, Choi H J, Choi M, Seo J M, Jung S M, Kim M J, Zhang S, Zhang L, Xia Z, Dai L, Park N, Baek J B. Sci. Rep., 2013, 3: 1810.

[56]

Zhang J, Dai L. Angew. Chem. Int. Ed., 201, 55: 13296.

[57]

Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S. Chem. Rev., 2012, 112: 6156.

[58]

Chua C K, Pumera M. Chem. Soc. Rev., 2013, 42: 3222.

[59]

Quintana M, Spyrou K, Grzelczak M, Browne W R, Rudolf P, Prato M. ACS Nano, 2010, 4: 3527.

[60]

Xu Y, Bai H, Lu G, Li C, Shi G Q. J. Am. Chem. Soc., 2008, 130: 5856.

[61]

Yan L, Zheng Y B, Zhao F, Li S J, Gao X F, Xu B Q, Weiss P S, Zhao Y L. Chem. Soc. Rev., 2012, 41: 97.

[62]

Ambrosi A, Chua C K, Latiff N M, Loo A H, Wong C H A, Eng A Y S, Bonanni A, Pumera M. Chem. Soc. Rev., 201, 45: 2458.

[63]

Gao X, Liu H, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48: 908.

[64]

Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Chem. Rev., 2018, 118: 7744.

[65]

Kang B, Shi H, Wu S, Zhao W, Ai H, Lee J Y. Carbon, 2017, 123: 415.

[66]

Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y, Li Y. Nano Energy, 2018, 44: 144.

[67]

Zhao J, Chen Z, Zhao J. J. Mater. Chem. A, 2019, 7: 4026.

[68]

Zhang J, Chen G, Müllen K, Feng X. Adv. Mater., 2018, 30: 1800528.

[69]

Gu Jinxing, Magagula Saneliswa, Zhao Jingxiang, Chen Zhongfang. Boosting ORR/OER Activity of Graphdiyne by Simple Heteroatom Doping. Small Methods, 2019, 3(9): 1800550.

[70]

Das B K, Sen D, Chattopadhyay K K. Phys. Chem. Chem. Phys., 201, 18: 2949.

[71]

He J, Wang N, Yang Z, Shen X, Wang K, Huang C, Yi Y, Tu Z, Li Y. Energy Environ. Sci., 2018, 11: 2893.

[72]

Wang N, He J, Tu Z, Yang Z, Zhao F, Li X, Huang C, Wang K, Jiu T, Yi Y, Li Y. Angew. Chem. Int. Ed., 2017, 56: 10740.

[73]

Farimani A B, Min K, Aluru N R. ACS Nano, 2014, 8: 7914.

[74]

Krasnozhon D, Lembke D, Nyffeler C, Leblebici Y, Kis A. Nano Lett., 2014, 14: 5905.

[75]

Lv R, Robinson J A, Schaak R E, Sun D, Sun Y, Mallouk T E, Terrones M. Acc. Chem. Res., 2014, 48: 56.

[76]

Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10: 1271.

[77]

Voiry D, Mohite A, Chhowalla M. Chem. Soc. Rev., 2015, 44: 2702.

[78]

Acerce M, Voiry D, Chhowalla M. Nat. Nanotechnol., 2015, 10: 313.

[79]

Li H, Jia X, Zhang Q, Wang X. Chem., 2018, 4: 1.

[80]

Gutiérrez H R, Perea-López N, Elía A L, Berkdemir A, Wang B, Lv R, López-Urías F, Crespi V H, Terrones H, Terrones M. Nano Lett., 2013, 13: 3447.

[81]

Wang Z, Shen Y, Ito Y, Zhang Y, Du J, Fujita T, Hirata A, Tang Z, Chen M. ACS Nano, 2018, 12: 1571.

[82]

Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M. Nano Lett., 2011, 11: 5111.

[83]

Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z. Adv. Mater., 2015, 27: 1117.

[84]

Chou S S, Sai N, Lu P, Coker E N, Liu S, Artyushkova K, Luk T S, Kaehr B, Brinker C J. Nat. Commun., 2015, 6: 8311.

[85]

Lauritsen J V, Kibsgaard J, Helveg S, Topsoe H, Clausen B S, Lægsgaard E, Besenbacher F. Nat. Nanotechnol., 2007, 2: 53.

[86]

Hu Z, Wu Z, Han C, He J, Ni Z, Chen W. Chem. Soc. Rev., 2018, 47: 3100.

[87]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23: 4248.

[88]

Chaudhari N K, Jin H, Kim B, San Baek D, Joo S H, Lee K. J. Mater. Chem. A, 2017, 5: 24564.

[89]

Xiong D, Li X, Bai Z, Lu S. Small, 2018, 14: 1703419.

[90]

Lukatskaya M R, Mashtalir O, Ren C E, Dall’Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Science, 2013, 341: 1502.

[91]

Ng V M H, Huang H, Zhou K, Lee P S, Que W, Xu J Z, Kong L B. J. Mater. Chem. A, 2017, 5: 3039.

[92]

Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26: 992.

[93]

Chen K, Xue D. Chem. Rec., 2018, 18: 282.

[94]

Chen K, Xue D. Nanotechnology, 2017, 29: 024003.

[95]

Chen K, Xue D. Scientia Sinica Technologica, 2018, 49: 175.

[96]

Chen K, Xue D. Funct. Mater. Lett., 2019, 12: 1830005.

[97]

Simon P, Gogotsi Y. Nat. Mater., 2008, 7: 845.

[98]

Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W. Chem. Soc. Rev., 2017, 46: 6816.

[99]

Hu Y, Zhao Y, Li Y, Li H, Qu L, Xie X, Dai L M. Chem. Res. Chinese Universities, 2012, 28(2): 302.

[100]

Pachfule P, Shinde D, Majumder M, Xu Q. Nat. Chem., 201, 8: 718.

[101]

Liang Z, Zhao R, Qiu T, Zou R, Xu Q. Energy Chem., 2019, 1: 100001.

[102]

Liang X, Chen K, Xue D. Adv. Energy Mater., 2018, 8: 1703329.

[103]

Yu X, Yun S, Yeon J S, Bhattacharya P, Wang L, Woo L S, Hu X, Park H S. Adv. Energy Mater., 2018, 8: 1702930.

[104]

Wang Y, Song Y, Xia Y. Chem. Soc. Rev., 201, 45: 5925.

[105]

Yang C, Chen Z, Shakir I, Xu Y, Lu H. Nano Res., 201, 9: 951.

[106]

Zhang Q F, Uchaker E, Candelaria S L, Cao G Z. Chem. Soc. Rev., 2013, 42: 3127.

[107]

Yu G, Xie X, Pan L, Bao Z, Cui Y. Nano Energy, 2013, 2: 213.

[108]

Hu C, Song L, Zhang Z, Chen N, Feng Z, Qu L. Energy Environ. Sci., 2015, 8: 31.

[109]

Zhang C, Lv W, Tao Y, Yang Q H. Energy Environ. Sci., 2015, 8: 1390.

[110]

Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J W. Adv. Mater., 2018, 30: 1704561.

[111]

Kong L B, Zhang J, Cai J J, Yang Z S, Luo Y C, Kang L. Chem. Res. Chinese Universities, 2011, 27(2): 295.

[112]

Wang H, Shi X, Shi Y, Zhang W, Yao S. Chem. Res. Chinese Universities, 2017, 33(4): 638.

[113]

Brezesinski T, Wang J, Tolbert S H, Dunn B. Nat. Mater., 2010, 9: 146.

[114]

Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abrua H D, Simon P, Dunn B. Nat. Mater., 2013, 12: 518.

[115]

Xia J, Chen F, Li J, Tao N. Nat. Nanotechnol., 2009, 4: 505.

[116]

Xu P, Kang J, Choi J B, Suhr J, Yu J, Li F, Byun J H, Kim B S, Chou T W. ACS Nano, 2014, 8: 9437.

[117]

Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Science, 2011, 332: 1537.

[118]

Cui C, Qian W, Yu Y, Kong C, Yu B, Xiang L, Wei F. J. Am. Chem. Soc., 2014, 136: 2256.

[119]

Zhang W, Xu C, Ma C, Li G, Wang Y, Zhang K, Li F, Liu C, Cheng H M, Du Y, Tang N, Ren W. Adv. Mater., 2017, 29: 1701677.

[120]

Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L. Angew. Chem. Int. Ed., 2012, 51: 11371.

[121]

Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z. ACS Nano, 2014, 8: 4720.

[122]

Wang T, Wang L X, Wu D L, Xia W, Jia D Z. Sci. Rep, 2015, 5: 9591.

[123]

Okubo M, Sugahara A, Kajiyama S, Yamada A. Acc. Chem. Res., 2018, 51: 591.

[124]

Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna P L, Grey C P, Dunn B, Simon P. Nat. Energy, 201, 1: 16070.

[125]

Dall’Agnese Y, Lukatskaya M R, Cook K M, Taberna P L, Gogotsi Y, Simon P. Electrochem. Commun., 2014, 48: 118.

[126]

Wen Y, Rufford T E, Chen X, Li N, Lyu M, Dai L, Wang L. Nano Energy, 2017, 38: 368.

[127]

Yoon Yeoheung, Lee Minhe, Kim Seong Ku, Bae Garam, Song Wooseok, Myung Sung, Lim Jongsun, Lee Sun Sook, Zyung Taehyoung, An Ki-Seok. A Strategy for Synthesis of Carbon Nitride Induced Chemically Doped 2D MXene for High-Performance Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8(15): 1703173.

[128]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F. Science, 2017, 355: eaad4998.

[129]

Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K I, Iwashita N. Chem. Rev., 2007, 107: 3904.

[130]

Qu L, Liu Y, Baek J B, Dai L. ACSNano, 2010, 4: 1321.

[131]

Ito Y, Qiu H J, Fujita T, Tanabe Y, Tanigaki K, Chen M. Adv. Mater., 2014, 26: 4145.

[132]

Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S. ACS Nano, 2012, 6: 205.

[133]

Zhang X, Lu Z, Fu Z, Tang Y, Ma D, Yang Z. J. Power Sources, 2015, 276: 222.

[134]

Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H. J. Mater. Chem., 2012, 22: 390.

[135]

Wu J, Rodrigues M T F, Vajtai R, Ajayan P M. Adv. Mater., 201, 28: 6239.

[136]

Chai G L, Qiu K, Qiao M, Titirici M M, Shang C, Guo Z. Energy Environ. Sci., 2017, 10: 1186.

[137]

Kang B, Lee J Y. J. Phys. Chem. C, 2014, 118: 12035.

[138]

Kang B, Wu S, Ma J, Ai H, Lee J Y. Nanoscale, 2019, 11: 16599.

[139]

Wang Ning, He Jianjiang, Wang Kun, Zhao Yingjie, Jiu Tonggang, Huang Changshui, Li Yuliang. Graphdiyne‐Based Materials: Preparation and Application for Electrochemical Energy Storage. Advanced Materials, 2019, 31(42): 1803202.

[140]

Lv Q, Si W, Yang Z, Wang N, Tu Z, Yi Y, Huang C, Jiang L, Zhang M, He J, Long Y. ACS Appl. Mater. Interfaces, 2017, 9: 29744.

[141]

Zhao Y, Tang H, Yang N, Wang D. Adv. Sci., 2018, 5: 1800959.

[142]

Yu Huidi, Xue Yurui, Li Yuliang. Graphdiyne and its Assembly Architectures: Synthesis, Functionalization, and Applications. Advanced Materials, 2019, 31(42): 1803101.

[143]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat. Chem., 2018, 10: 924.

[144]

Feng Z, Ma Y, Li Y, Li R, Liu J, Li H, Tang Y, Dai X. J. Phys.: Condens. Matter, 2019, 31: 465201.

[145]

Lv Q, Si W, He J, Sun L, Zhang C, Wang N, Yang Z, Li X, Wang X, Deng W, Long Y, Huang C, Li Y. Nat. Commun., 2018, 9: 3376.

[146]

Zhang S, Cai Y, He H, Zhang Y, Liu R, Cao H, Wang M, Liu J, Zhang G, Li Y, Liu H, Li B. J. Mater. Chem. A, 201, 4: 4738.

[147]

Zhang X, Shi S, Gu T, Li L, Yu S. Phys. Chem. Chem. Phys., 2018, 20: 18184.

[148]

Huang H, Feng X, Du C, Song W. Chem. Commun., 2015, 51: 7903.

[149]

Huang H, Feng X, Du C, Song W. J. Mater. Chem. A, 2015, 3: 16050.

[150]

Zhang H, Tian Y, Zhao J, Cai Q, Chen Z. Electrochim. Acta, 2017, 225: 543.

[151]

Chua X J, Luxa J, Eng A Y S, Tan S M, Sofer Z, Pumera M. ACS Catal., 201, 6: 5724.

[152]

Eng A Y S, Ambrosi A, Sofer Z, Simek P, Pumera M. ACS Nano, 2014, 8: 12185.

[153]

Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2015, 44: 2060.

[154]

Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. J. Electrochem. Soc., 2005, 152: J23.

[155]

Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Nat. Chem., 2013, 5: 300.

[156]

Zheng Y, Jiao Y, Li L H, Xing T, Chen Y, Jaroniec M, Qiao S Z. ACS Nano, 2014, 8: 5290.

[157]

Jiao Y, Zheng Y, Davey K, Qiao S Z. Nat. Energy, 201, 1: 16130.

[158]

Ito Y, Cong W, Fujita T, Tang Z, Chen M. Angew. Chem. Int. Ed., 2014, 54: 2131.

[159]

Hinnemann B, Moses P G, Bonde J, Jorgensen K P, Nielsen J H, Horch S, Chorkendorff I, Norskov J K. J. Am. Chem. Soc., 2005, 127: 5308.

[160]

Tsai C, Chan K, Abild-Pedersen F, Norskov J K. Phys. Chem. Chem. Phys., 2014, 16: 13156.

[161]

Fan X L, Yang Y, Xiao P, Lau W M. J. Mater. Chem. A, 2014, 2: 20545.

[162]

Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nano Lett., 2013, 13: 6222.

[163]

Yin Y, Han J, Zhang Y, Zhang X, Xu P, Yuan Q, Samad L, Wang X, Wang Y, Zhang Z, Zhang P, Cao X, Song B, Jin S. J. Am. Chem. Soc., 201, 138: 7965.

[164]

Yu Y F, Nam G H, Wu X J, Zhang K, Yang Z Z, Chen J Z, Ma Q L, Ran F R, Wang X Z, Li H, Huang X, Xiong Q H, Zhang Q, Gu L, Huang W, Zhang H. Nat. Chem., 2018, 10: 638.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/